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SUMMARY

This report descr1bes work performed on the deve]opment of a h1erarch1ca1
real- time algorithm for opt1ma1 three-dimensional aircraft maneuvers using
S1ngu1ar Perturbation Theory (SPT) New theoret1ca1 results justify and develop
systematic methods for real- time computat1on of nonlinear feedback controls by
means of SPT and provide an assessment of the accuracy of the resulting SPT
control. Practical results apply SPT to obtain a real-time feedback law for
the three-dimensional minimum time long range intercept problem for an F-4 air-
craft model (six state, three control variable, point mass model). Nonlinear
feedback laws are presented for computing the optimal control variables u (throttle),
o (bank angle) and o @angle-of-attack) as a function of target and pursuer air-
craft states and desired terminal conditions. A real-time capability assess-
ment of the SPT algorithm on a TI9900 microcomputer has been performed and the
control update rates have been determined. The storage and computational re-
quirements of the algorithm are found to be well sufted for on-board real-time
implementation on a m1crocomputer

The accuracy of the SPT solution is analyzed and it is shown how "continua-
tion-type" methods may be used to obtain exact optimal trajectories starting
from the SPT solution. The advantage of using predictive terms to supplement
the SPT feedback Taws is demonstrated for the afrcraft trajectory optimization
problem. In particular, it is shown that the SPT approximation breaks down near
the terminal phase and must be corrected by "cont1nuat1on" and Generalized Mul-
tiple Scale (GMS) methods.




.~ CHAPTER 1.
INTRODUCTION

- This report describes work performed on the development of a rea] time
a]gor1thm for opt1ma1 three- dimensional aircraft maneuvers’ us1ng S1ngu1ar ’
Perturbat1on Theory (SPT) The optimization problem considered 1s ‘that of
m1n1mum time long range 1ntercept1on Nonlinear feedback laws are presented
for computing the optimal control variables u (thrott]e) o (bank angie) and

(ang]e of-attack) as a function of target and pursuer a1rcraft states. A
real-time capability assessment of the SPT algorithm on a TI9900 m1crocomputer
has been performed and the control update rates have been determined. ~ The
storage and computat1ona1 requ1rements of the algorithm are found to be we]]
suited for on-board real-time implementation on a TI9900 m1crocomputer

. The organ1zat1on of the report is as follows. Chapter 2 presents the air-
craft model (a six-state, point mass approximation) considered in the project.
The dynam1c equations, constraints and numerical simulation are discussed in
detail. Chapter 3 formu]ates the optimization prob]em and discusses exact methods
of so]ut1on-—1n part1cu1ar, the continuation method Chapter 4 presents the
genera] theory of feedback contro] Taw computat1on us1ng SPT. The prob]ems of
computational eff1c1ency and accuracy of the SPT method are discussed in detail.
Chapter 5 applies these theoret1ca1 results to the aircraft optimization problem
formulated in Chapter 3. We detail the computational procedures and the neces-
sary approximations made to obtain computationally feasible solutions. Chapter
6 describes the final real-time algorithm and presents numerical ‘examples for
various flight trajectories. In addition, we present computatioﬁltimes'for'the
algorithm based on the capabilities of the T19900 microcomputer. Conclusions
are presented in Chapter 7. | ' | ' S

1.2 Previous Work on Aircraft Trajectory Optimization

In this section, we trace the historical development of techniques for
flight path optimization of high performance aircraft. We will first discuss
the minimum-time problem in- the vertical plane which has been under consideration
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for over 35 years and then discuss the treatment of the horizontal plane problem
and the three-dimensional problem which has occurred only recently. Finally,

we sketch previous work in aircraft trajectory optimization using singular
perturbation theory.

Vert1ca14p1ane, minimum-time problem.

Before the deve]opment of superson1c aircraft, traJectory opt1m1zat1on was
performed us1ng the ' 'quasi- steady approx1mat10n in which the acce1erat1ons of
the aircraft were neg]ected ' Towards the end of World War II w1th the emergence
of h1qher performance aircraft, this assumption led to results which were 1ess
and less accurate The h1gh acce]erat1on capability of the aircraft part1cu]ar1y
along the f11ght path could no 1onger be neglected. Kaiser (1944) cons1dered
the total energy of the aircraft, expressed as energy height, to obtain a mini-
mum-time climb path which took into account the longitudinal acceleration of the
jet interceptor. The solution could be obtained graphically in terms of'energy

without resorting to the use of the Calculus of Variations. This graphical
approach was later used by Lush (1951), Kelley (1952), Fuhrman (1952), Garbell
(1953), and Lush (1956) to obtain minimum-time and minimum-fuel paths with free
boundary conditions. Rutowski (1954) developed a graphical optimization tech-
nique whieh yielded the theoretical Rutowski energy climb path.

Much of the initial work in obtaining numerical results using the indirect
method of the Calculus of Variations was done at RAND around 1949 - 1951. Miele
(1950, 1955a, 1955b, 1958, 1962) was active in the field of flight path optimi-
zation for over ten years during which he introduced a new method of solving
the m1n1mum—t1me climb problem using Green's theorem. This method is applicable
on]y to a restr1cted class of problems which can be formu]ated in a 11near form
in two transformed variables. Beginning in about 1954, M1e1e (1959a, b) and
Cicala (1955a,b) individually and in collaboration developed the formulation of
the fixed end-point, vertical plane problem in terms of the Bolza form of the
Calculus of Variations. Here they considered accelerations normal to and along
the flight path as well as control inequality constraints and state equality
constraints. Numerical results were obtained only for simplified cases.  Kel-
ley (1959) studied .zoom climbs including consideration of both normal and longi-
tudinal "accelerations and discontinuous thrust due to afterburner burnout.:
‘Brryson (1966) considered the minimum-time interception of a non-maneuvering



target by utilizing the technique of reducing the state space by the use of
dimensionless variables. : : S

In the 1960's much emphasis was placed on the deve]opment of grad1ent
algorithms as it was recognized that digital computers were necessary to so]ve
flight path optimization problems. The first successful programs were deve]oped
by Bryson (1962) and Kelley (1962). With this technique, an optimum flight:path
is determined by comparison of an existing trajectory with its predecessors.

The method can be made as exact as the model of the aircraft which is being
simulated. In general, however, solutions are slow to converge, and will often
converge on a local minimum rather than the true minimum. Balakrishnan (l969)
proposed a modified gradient approach designed to minimize the large computation
times. .
Development of numerical techniques for the integration of Euler-lLagrange
equations was accomplished by Heerman (1964) and Vincent (1966). The results
are generally in the form of a flooded region of trajectories where some re-
finement is required to arrive at the desired solution. Programs of this type
are characterized by instabilities and extreme sensitivity to particular para-
meters.

There was also a renewal of interest in the energy-state approximation.
Boyd and Christie (1965) worked with the concept of energy management and de-
veloped operational guidelines without resorting to an indirect method of the
Calculus of Variations or gradient solution. Bryson, Desai and Hoffman (1969)
presented a fairly complete treatment of the energy-state approximation and
applied it to a series of vertical-plane flight path optimization problems to
a given range. Other examples of recent applications of the energy-state ap-
proximation to the vertical plane problem are by Meier et al. (1970), Schultz
and Zagalsky (1972) and Parsons (1972). Parsons considered the minimum-time
transit of a supersonic aircraft to a point which is far enough away that there
is a central cruise arc at the maximum Mach number of the aircraft.

Sederstrom (1972) presents results of energy management flight tests con-
ducted with an F-8 aircraft. He showed that it was possible to calibrate an
individual aircraft and optimize its minimum-time, energy-climb performance on
the basis of a relatively simple procedure. Sederstrom et al. (1971) also
consider the problem of displays and pilot workload by developing a hybrid simu-
lation of the F-4 aircraft following optimal flight paths obtained using energy
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management techniques. Another set of results of flight tests conducted on the
F-8D airp]ane are presented by Capt. Bryan and Allison (1972). Here three
f11ght path schedules were compared; an optimum energy flight path, a flight
manua] f11ght path and an optimum energy flight path schedule based on nominal
aerodynam1c and performance data for the F-8D airplane. More recently, Barman
and Erzberger (1976) considered the problem of determining optimum trajectories
with a'rahge tonstra1nt using the energy-state method for short-haul subsonic
aircraft' Uehara Stewart and Wood (1978) investigate minimum-time loop man-
euvers, i. e., maneuvers in the vertical plane in which the flight path angle
increases monotonically from 0 to 360 degrees.

Horizontal-plane, minimum-time problem

~The minimum-fuel problem was considered in the initial work in determining
optimum flight paths in the horizontal plane. Connor (1967) studied the sin-
gular arc portion of the minimum-fuel path at constant altitude and Bryson and
Lele (1969) presented the full solution of this problem. Final position con-
straints were not included in this work. Erzberger and Lee (1971) considered
the constant-altitude, constant-velocity minimum-time solution to a point and
to a line. - Hedrick and Bryson (1971a,b) investigated constant-altitude, variable-
velocity, minimum-time paths to a final velocity and heading without final
horizontal position constraints. Parsons (1972) considers constant-altitude,
variable-velocity, minimum-time flight paths to a final point or onto a final
1ine when the flight path is long enough that a cruise period at maximum velocity
or a straight bank angle chatter arc is present in the flight. Hoffman and
Bryson (1971) considered the case when the cruise period does not exist.

Three-dimensional, minimum-time problem
In 1970, Kelley and Edelbaum (1970) considered three-dimensional, minimum-
time flight paths using the energy-state approximation and suggested an asymp-

totic expansion procedure based on singular perturbation theory to correct the
solution near altitude transitions. Horizontal plane final position constraints
were not considered and numerical results were not presented. Kelley (1971a)
further developed the asymptotic expansion approach suggested above. Numerical
results for minimum-time paths without final position constraints were pre-
sented by Kelley and Lefton (1972a) and Kelley (1973c).

Hedrick and Bryson (1971, 1972) also treated the three-dimensional,



m1n1mum tlme prob]em w1thout horizontal- p1ane final pos1t1on constraints dur1ng
th1s same period. . Hedrick obtained more complete numerical results than Kelley
and assoc1ates but cons1dered 1ess realistic flight envelope constraints.

Others have cons1dered spec1f1c three-dimensional turns with final pos1t1on
constra1nts w1thout attempting to .provide a general characterization of these
maneuvers, e.g., Stein et al. (1967), Cambell and Hartsook (1972). Parsons and
Bryson (1972) use the energy-state approximation to consider three-dimensional,
minimum-time flight paths to a final point or onto a final Tine when the flight
path is long enough that a central cruise period at maximum Mach number is
present in the flight. Hoffman and Bryson (1973) extend Parsons' work to con-
sider téchniques for real-time on-Tine optimum flight path control using the
reduced-order model obtained from the energy-state approximation. They also
studied shdrt-range maneuvers where the cruise period is absent.

Singular Perturbation Theory (SPT) approximation of optimal aircraft trajectories

In a series of papers appearing in the early seventies, Kelley app1ied the
asymptotic ‘expansion methods of singular perturbation theory to aircraft op-
timization problem. By considering boundary layer correction terms he was able
to improve the usual reduced order energy approximation in the regions where
instantaneous altitude transitions occur. In the first paper of the series,
Kelley and Edelbaum (1970) considered three-dimensional maneuvers, both energy
climbs and.energy turns. In subsequent papers, Kelley (1970a) considered the’
general theoretical problem for a two-state system, and Kelley (1970b) applied
the method to horizontal plane control of a rocket in a vacuum. The papers,
Kelley (1971a) and Kelley and Lefton (1972a), consider energy state models with
turn. More generally, Kelley (1971b, 1973c) considers three-dimensional man-
euvers with variable mass. Note that Kelley (1973c) gives a detailed account"
of the singular perturbation approach to aircraft problems and includes most of
the earlier work in this. paper. '

More recently, other investigators have applied asymptotic techniques to
aircraft trajectory optimization. Ardema (1976) applied the method of matched
asymptotic expansion, one of many singular perturbation methods, to the vertical
plane minimum time-to-climb problem. He calculated the zero and first order
SPT approximations and compared them to the energy state approximation and the
solution obtained by the method of steepest descent (which one could assume to
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be optimal). He found that the first-order SPT approximation was close to the
steepest descent solution and SPT required much less computation than the latter.
In a later paper Ardema (1978) considered a general third order nonlinear SPT
probTem.and'Studied the occurrence of singular arcs in the solution. Breakweli
(1977, 1978) considered the vertical plane, minimum-time problem where drag D

is much less than 1ift L and defined a natural perturbation parameter e=D/L.

He also considered the occurrence of singular arcs in the solution.

Note that the work mentioned so far only applies SPT to off—]ine_aircraft
trajectory optimization. In a recent series of papers Calise has applied com-
plete time scale separation to obtain feedback controls by means of SPT.
Aggarwal, Calise and Goldstein (1977) consider the vertical plane, minimum-fuel
problem for a transport aircraft. Calise (1977a, 1978b) considered the vertical
plane minimum-time problem. Calise (1977b) considered feedback coutfo] of a
missile in the horizontal plane. Calise (1978a) considered the vertical plane
problem to minimize a weighted combination of fuel and time for both transport
and missile.

This project has emphasized on-1line trajectory optimization for aircraft
control. The theoretical results (Chapter 4) address the problem of applying
SPT to obtain feedback controls which can be computed on-1ine and stored on-
board. We justify and extend the method of complete time scale separation of
Calise (1978b) and indicate when the algorithm yields a well-defined control
law. (See Subsection 4.3.2 and Appendix 4.2.) We also indicate methods for
applying SPT approximations when there is no complete time scale seapration
(see Subsections 4.3.3 and 4.3.4), i.e., the use of suboptimal solutions of the
slow reduced order and linearization of the fast sdbprob]em around the reduced
order solution. Note that when the linearized fast subproblem itself exhibits
time scale separation, one can apply the Generalized Multiple Time Scales (GMS)
methods of Ramnath and Sandri (1969) to obtain further computational efficiency.
Ramnath and Sinhu (1975) applied this method to determine space shuttle re-entry
paths requiring minimum mass of heat shielding. In addition, we consider the
state space dependence of the accuracy of the SPT approximation and the break- -
down of SPT near the terminal target (see Section 4.4). _

The practical results (Chapters 5 and 6) apply SPT to obtain a real-time
feedback law for the three-dimensional minimum time-to-interception problem for
a realistic aircraft model. The six-state point mass model uses real data for



the aerodynamié coefficienfs'and realistic controls and ;onstraints:(see '
Chapter 2).. In addition, we obtain the SPT algorithm for .this model and assess
its real-time capability on a TI9900 microprocessor (see Chapter 6). o



2.1 Introduct1on _ o

In this chanter we descr1be the a1rcraft mode] used 1n this nro1ect..:I”'
summary, this model assumes a point mass approx1mat1on——that 1s, state var1ab1es
describing the vehicle.attitude are either omitted or used as control variables.
This assumption implies, of course, that the charaéteristic time cthtants of
the control system are significantly less than the’time thstaﬁts of the motion;
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is effectively achieved instantaneously. Another assumption is that the earth's
surface is flat, and provides the initial reference system. Next, it is aésumed
that the vehicle thrust vector is always parallel to the zero lift direction.
According to Parsons (1972) this assumption is not a.serious restriction. Fin-
ally, vehicle mass is assumed constant. The resulting six-state equations of
motion are presented in Section 2.2. This section also presents the state and
control constraints for the model.

The aircraft whose characteristics were used in thlS prOJect was an early
version of the F-4 used by Bryson, Desai and Hoffman (1969) and as Airplane 1
by Bryson and Parsons (1971). Section 2.3 describes the numerical treatment of
the aerodynamic coefficients characterizing this plane. 1In addjtion,'this sec-
tion describes the atmospheric model used and the computer simulation of the.
aircraft dynamics.

2.2 Aircraft Equations of Motion and Constraints

The system of equations for the aircraft presented below is typ1ca1 of the
point mass approximation models encountered throughout the literature. There-
fore, the derivation shall not be repeated here. The interested reader may
refer to Parsons (1972) from whose work we have chosen our aircraft model.

The point mass model together with our other assumptions mentioned in the
introductory Section 2.1 result in a six-dimensional system of first order

nonlinear differential equations:



(2.1) X = V cosBcosy
(2.2) y = V sinBcosy .- i
(2.3) h =V siny
» T cosa -~ D - mg s}&y- IR :*ﬁ
(2.4) V= = o
s _ (L + T sina)sing 5
(2.5) B = mV cosy
y ;((L'¥ T’siﬁa)coso - mg COSYy |
(2.6) v = )

In equations (2.1) - (2.6), the state variables are x,-y, h, V, 8, y which rep-
resent respectively the horizontal position (x,y)[ﬁ@_thggf]at earth's plane,

the height h above a fixed ground height, the magnitude V'.of the velocity, the
heading angle B in the horizontal plane of the earth and the flight path angle v.
The reader should refer to Figure 2.1 to see the geometric relation between the
state variables. The parameters T, D and L are respectively the thrust, drag
and 1ift forces on the plane. In terms of aerodynamic coefficients these are
given as follows: PRSI IRY o

(2.7) T

u Tmax(M,h)

where Tmax is the maximum thrust for height h and Mach number M. Mach number

is related to the velocity V by, the equation

(2.8) V = c(h)M

where c(h) is the speed of sound at;alpi;ﬁde,h.;?

(2.9) D:-
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. is the 1ift coefficient, C
La DO
zero 11ft drag coeff1c1ent and n is the. aerodynam1c efficiency factor. The
and n each depend»only on Mach-number M. The parameter S

2

In the above equations (2.9) - (2.13), C is the’

parameters CL s CD

0
denotes a character1st1c surface area (49.239 m
is the density at altitude h.

The parameterS'u, o and o are considered control variables.. The control u

for this aircraft) and: p(h)

represents throttie value and varies between 0 and 1, o denotes angle of attack
and o denotes the bank ahg]e of the plane. See Figure 2.1 for an illustration
of the geometric relationship of o and o to the state variables.

In addition to the dynamic equations (2.1) - (2.6), we have the state and

control constraints

(2.14) 0 <a < ag
(2.15) 0<u<x<l
(2.16) 0 <V Vmax(h)

(2.17) -G <0 <0

(2.18) h . <h

where ag is the stall value for the angle of attack (assumed 12° in our problem)

and Onax is the maximum bank angle (assumed about 76° to correspond to a maxi-
mum normal load of 4g during horizontal turns). These constraints representi

structural and controllability limitations on the aircraft.

2.3 Numerical Simulation of Aircraft

As we mentioned before in Section 2.1, the aircraft whose characteristics
were used in this project is an early version Qf'the F-4 as used by Bryson,
Desai and Hoffman (1969) and as Airplane 1 by Bryson and Parsons (1971). The
aerodynamic coefficients for this aircraft are tabulated as a function of Mach

number and the maximum thrust'as a function of Mach number and altitude in
Appendix 2.1. The weight of the aircraft was taken as constant at 1.5569 x 105 N

and the aerodynamic reference area S is 49.239 mz. The two atmospheric variables
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required in the simulation are sonic speed and air density.. These are indicated
in Appendix 2.1 as functions of altitude. '

The input data describing the atmosphere and the example aircraft as pre-
sented above is in tabulated form. A continuous numerical representation of
this data is essential for the simulation and the associated 6artia1 derivatives
are required for the solution of the optimization problem. Therefore, the data
was modeled using cubic.spiiﬁe-fifs which provided continuous values of the
data with continuous first and second derivatives. These spline fits are de-
scribed in more detail as follows:

(a) Sonic Speed c. The sonic speed as presented in Table 3 in Appendix 2.1
is constant above an altitude of 1.2192 x 104 m. Hence a cubic spline fit was

constructed for values of'height less than the above with an end-condition of

zero first derivative at this height. For a value of the first derivative at
0 m, a natural* spline fit was constructed and the value of this derivative
obtained was used as the end-condition at 0 m to construct the chosen cubic
spline fit.

(b) Atmospheric Density p. Since no special end-conditions were required

to model atmospheric density, a natural spline fit was constructed.
(c) Aerodynamic Coefficients CD

L—QL s n. As in Table 1 of Appendix 2.1,
0 o .
the aerodynamic coefficients are constant for M< 0.8 which gives end-conditions

at M=0.8 of zero first derivatives. The problem of end-conditions at M=2.0
was solved by constructing natural spline fits which provided values for first
derivatives at M=2.0 that were used to obtain the required spline fits.

(d) Maximum Thrust Tmax' Table 2 of Appendix 2;1 shows maximum thrust as
a function of two variables: altitude and Mach number. To numerically model

this data so as to have available continuous values with partial derivatives,
a natural bicubic spline fit was constructed. The natural fit provides zero
second partial derivative with respect to Mach number along the altitude boun-
dary, and at the corners zero mixed second partiél derivatives. Some inter-
polated values are presented in Table 4 of Appéndix 2.1. Note that the maximum
velocity constraint does not allow maximum thrust values at Tow altitude and
high Mach number. )
The dynamic simulation of the aircraft was carried out by numerically

*A natural spline fit provides continuous first derivatives and zero second
derivatives at the end-points.
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mtegrating the differential equations (2 1) - (2 6) us1ng a second order Adams-
Bashforth integration routine. :
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CHARACTERISTICS OF EXAMPLE AIRCRAFT AND ATMOSPHERE MODEL

Aerodynamic Coefficients .

APPENDIX 2.1

Table 1

for F-4 Model as Functions of Mach Number

R e

I TR YIRS LA RPa
S et 3

§ CDO La "
<0.8 0.0130 3.44 0.540
0.9 0.0140 3.58 0.750
1.0 0.0310 4.44 0.800
1.1 0.0388 3.88 0.830
1.2 0.0410 3.44 0.850
1.3 0.0408 3.20 0.875
1.4 0.0390 3.01 0.890
1.5 0.0372 2.84 0.910
1.6 0.0360 2.68 0.920
1.7 0.0354 2.55 0.930
1.8 0.0350 2.44 0.940
1.9 0.0348 2.34 0.945
2.0 0.0346 2.25 0.950

|




: o S Table. 2
Maximum Thrust for F-4 Model.as

Function.of Mach ‘Number and Altitude

16

) :'M 0.4 {06 | 0.8 | 1.0 1.2 1.4 | 1.6 1.8 | 2.0

x 103'm ' . R ’

0 12.60* (13,70 { 15.35 | 16.86 | 16.06 | - P -
1.524 11.21 |12.10 | 13.48 | 15.26 | 16.90 | 16.28 - -
3.048 9.74 110.59 | 11.83 |13.52 | 15.52 | 17.13 - -
4,572 8.32 |9.12 |10.36 | 11.92 | 13.92 | 16.06 |17.21 - -
6.096 7.07 | 7.70 | 8.81 [10.36 | 12.14 | 14.06 |15.88 - -
7.620 5.96 |6.54 | 7.47 | 8.81 | 10.50 |12.50 |14.23 | 15.39 -
9.144 4.98 | 5.47 | 6.27 | 7.47 | 8.94 |10.77 |12.50 | 13.83 -

10.668 4.05 |4.54 | 5.20 | 6.18 | 7.34 | 8.81 |10.40 | 11.70 | 12.63
12.192 3.25 |3.60 | 4.18 | 4.98 | 5.96 | 7.21 | 8.59 | 9.65 | 10.45
13.716 2,54 |2.89 | 3.38 | 3.96 | 4.76 | 5.74 | 6.81 | 7.70 | 8.36
15.240 1.96 | 2.18 | 2.49 | 3.02 | 3.69 | 4.45 | 5.29 | 5.92 | 6.41
16.764 1.42 | 1.65 | 1.87 | 2.27 | 2.85 | 3.43 | 4.09 | 4.54 | 4.85
18.288 0.98 | 1.11 | 1.33 | 1.65 | 2.05 | 2.54 | 3.02 | 3.38 | 3.60
19.812 0.58 [ 0.71 | 0.85 | 1.07 | 1.33 | 1.69-| 2.05 | 2.31 | 2.40
21.336 0.31 |0.40 | 0.49 | 0.62 | 0.76 | 0.98 | 1.29 | 1.38 | 1.42
*all values times 10" N
Table 3
Sonic Speed and Density as Functijons of Altitﬁde
Altitude | Sonic Speed | Air Density Altitude | Sonic Speed | Air Density
103 m m/seq' Kgm/m3 103 m m/sec Kgm/m3
0o 340.2 1.225 12.192 295.1 0.3015
1.524 334.4° 1.055 13.716 295.1 0.2371
" .3.048 328.3 0.9045 15.240 295.1 0.1865
4.572 322.2 ©0.7710 16.764 295.1 0.1466
6.096 316.1 0.6525 18.288 295.1 0.1153
7.620 309.7 0.5489 21.336 295.1 0.07133
| 9.144 303.2 10.4583 24.384 295.1 0.04410
1 10.668 296.6. | 0.3968



as

Table 4
Maximum Thrust Interpolated Using Bicubic Splines

RN 4 st 6] 7 8] 91011 1213 1.4]1.5]1.6 7 1.7 |18 1.9] 2.0

1 x103m : . !

b *
0 12.60 {13.12 | 13.70 | 14.46 | 15.35 {16.32 | 16.86 | 16.64 [16.06 - - - - - | = -
0.762 11.92 [12.37 {12.90 | 13.57 | 14.41 {15.26 | 16.06 | 16.64 116.68 - - - - - - -
1.524 11.21 {11.61 {12.10{12.72 | 13.48 {14.28 {15.26 {16.32 116.90 | 16.64 [16.28 - - - - - -
2.286 10.50 {10.85|11.34 | 11.92 |12.63 {13.43 {14.41 |15.52 :16.37 { 16.64 |16.86 - - - - - -

 3.048 9.74 110.14 {1 10.59 {11.17 | 11.83 |12.63 |{13.52 |14.55 {15.52 | 16.37 ;17.13 - - - - - -
3.810 9.03 | 9.39 | 9.86{10.41 }11.12 {11.88 |12.72 |13.66 [14.72 {15.84.|16.81 - - 1 - - - -
4.572 8.32 | 8.67{ 9.12| 9.70{10.36 |11.12 [11.92-{12.86 |13.92 | 15.08 | 16.06 { 16.68 | 17.21 - - - -
5.334 | 7.70 | 8.011( 8.36| 8.94 | 9.56|10.32 ;11.16 {12.05 ;13.03 | 14.10 {15.03 :15.84 [16.55 | . - - - -
6.096 7.07 1 7.34 1 7.70| 8.18 | 8.81 | 9.56 |10.36 |11.25 |12.14 | 13.08 | 14.06 : 14.99 ] 15.88 - - -o- -
6.858 6.49 | 6.76 | 7.07| 7.56| 8.10 | 8.81| 9.56 |10.41 [11.30|12.23 | 13.26 {14.23 [ 15.08| - - - -
7.620 5.96 ; 6.23| 6.54| 6.94| 7.47 | 8.10| 8.81 | 9.61 {10.50 | 11.48 {12.50 113.43 14.23 | 14.81 {15.39' - .-

! 8.382 5.47 | 5.69 | 6.01| 6.36| 6.85| 7.43| 8.14 | 8.85} 9.74{10.68 |11.70 | 12.59 | 13.39 | 14.01 [14.63 o -

| 9.144 4.98 | 5.261 5.47| 5.83| 6.27 | 6.85{ 7.47-| 8.18{ 8.94} -9.83 |10.77 {11.65112.50 | 13.2113.83} - -

| 9.506 4,49 | 4,721 4.98 ] '5.34} 5.741 6.23 | 6.81 | 7.43{ 8.14} 8.90 | 9.79 {10.63}11.48|12.19 123811 - -
10.668 4,051 4.27) 4,54 4.85} 5.20 | 5.65{ 6.18 | 6.72 | 7.34| 8.05| 8.81} 9.61110.401(11.12 {11.7012.19| 12.63
11.430 3.65 | 3.83| 4.05| 4.31| 4.67 | 5.07 | 5.56| 6.05{ 6.63: 7.25| 7.96 ] 8.72] 9.47 |10.10 {10.63 | 11.12 11.52
12.192 - 3.25 | 3.43| 3.60| 3.87} 4.18| 4.54| 4.98 ; 5.43 | 5.96! 6.54 | 7.21| 7.92: 8.59| 9.16| 9.65|10.05| 10.45
12.954 2.80 | 3.03| 3.25| 3.47| 3.78| 4.09 4.45{ 4.85 | 5.341!1.5.87 | 6.45] 7.07"} 7.70} 8.23.%1 8.67 |. 9.07:] 9.39
13.716 - 2.54 | 2.71 1| 2.89| 3.11] 3.381 3.65| 3.96| 4.31{ 4.76| 5.25| 5.74| 6.27'| 6.81| 7.30-] 7.70 | 8.05| 8.36|
14.478 2.22 1 2.36 | 2.54| 2.71| 2.94| 3.20| 3.47 | 3.83 | 4.18| 4.63| 5.07| 5.56 | 6.01| 6.41[ 6.76 | 7.07 | 7.34|
15.240 1.96 | 2.05| 2.181 2.31{ 2.49| 2.71| 3.02| 3.3¢| 3.69| 4.05| 4.45| 4.89 | 5.29| 5.65 | 5.92 | 6.18} 6.41
16.002 | 1.69 | 1.78 | 1.91| 2.00| 2.14| 2.38 | 2.62 | 2.94{ 3.25| 3.56] 3.91| 4.31| 4.67| 4.94/| 5.20| 5.38| 5.56
16.764 - 1.42 | 1.56 ] 1.65| 1.73| 1.87 | 2.05| 2.27 | 2.54 | 2.85| 3.11| 3.43| 3.78| 4.09| 4.36 | 4.54 | 4.72( 4.85

17.526 1.20 | 1.29] 1.38| 1.47} 1.60| 1.73| 1.96 | 2.18| 2.45| 2.71| 2.98| 3.29| 3.56|.3.78 | 3.96| 4.09 4.23
18.288 0.98 | 1.02{ 1.11} 1.20| 1.33{ 1.47| 1.65] 1.82| 2.05| 2.27| 2.54| 2.80| 3.02| 3.20.| 3.38| 3.51| 3.60
19.050 0.76 | 0.85 | 0.89( 0.98| 1.07{ 1.20{ 1.33| 1.51{ 1.69| 1.87| 2.09| 2.31 2.54% 2.71: 2.85] 2.94| 2.98
19.812 0.58 | 0.67( 0.71] 0.76 | 0.85} 0.93| 1.07 { 1.20{ 1.33| 1.51r 1.69| 1.87| 2.05| 2.18: 2,31 (. 2.36| 2.40
20.574 0.45 | 0.49.| 0.53] 0.58| 0.67} 0.76 | 0.85| 0.93| 1.02|.1.16|.1.33| 1.51] 1.65} 1.78 {.1.82 1.87 | 1.87
21.336 . 0.31] 0.36] 0.0 0.441 0.491{ 0.53| 0.62| 0.67 | 0.76| 0.85] 0.98| 1.16| 1.29] 1.38 | 1.38{ 1.38{ 1.42

*all values times 10 N



CHAPTER 3 _

THE OPTIMAL CONTROL PROBLEM AND EXACT, ITERATIVE METHODS OF SOLUTION .
“.1 Introduction -

In this chapter we describe the trajectory optimization problem considered
in this project and some exact, iterative methods for its solution. We wish
*r draw particular attention to the continuation methods described in Subsection
:.3.3. These methods seem to offer very efficient trajectory optimization al-
sorithms, although they are unfortunately not yet fast enough for on-line optimal
<antrol of aircraft.

The optimization problem chosen for this problem was the minimum time in-
tarception problem. That is, the problem was to minimize the total trajectory
time from a given initial point in the six-dimensional state space to a given
Final point. In Section 3.2 we describe the mathematical formulation of this

vptimization problem.

*.2 Formulation of the Minimum Time Interception Problem
Here we formulate the minimum time interception problem as in Bryson and
v {1975%) or in Athans and Falb (1966). First, we have a dynamic system

. heve x danotes the state vector and u denotes the control variable. We have
underiined the state x and control u to distinguish them from the horizontal
position x and the throttle control u. In later sections we will omit the
underiines when the context makes clear which case is meant. In our case
~={y,v,h,V,B,y) and u=(u,a,0). Equation (2.1) is the vector representation
o7 tre system (2.2.1) - (2.2.6). _

In zddition to the dynamic equations (2.1) there are inequality constraints

DR C(x,u) <0
+iyich must be satisfied at each time of the trajectory. Equation (2.2) is the
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vector representation (hence Q rather than 0) of the state and control con-

straints given in (2.2.14) - (2.2.18).
At the initial time t; an initial state x, is specified, -

(2.3) x(ty) = x5

where x0=-(x0,y0,ho,vo,80,yo). . Similarly, at the final time te a final state
X¢ 1s specified,

(2.4)

x(tg) = %

where_5f= (xf,yf,hf,vf,sf,yf). Note that the initial time is fixed but the final
time need not be.

Equations (2.1) - (2.4) denote constraints on the possible trajectories of
Xs U. The optimization problem is to minimize the cost of the trajectory where
the cost has the form

te
(2.5)  o(u) ft L(xou) dt
0

For the minimum time probTem L is simply the constant,
(2.6) L(x,u) =1

Let us say that a control trajectory u is feasible if u together with its
corresponding state tréjectory X, found from integrating (2.1) with initial
conditions (2.3), satisfies'the constraints (2.2) and the terminal condition
(2.4). The optimal control problem is to find a feasible control trajectory
u* such that‘ |

(2.7)  I(u*) = J(u)

_for all other feasible controls u. Solutions of the optimization problem are

usually found by solving the Euler-Lagrange first order necessary conditions.
These conditions are expressed in terms of a Hamiltonian function defined
(2.8)  H(x.2.u) = L(x,u) + ATF(x.u)
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T

where A denotes a vector of the same dimension as x and A denotes its transpose.

In our case, H is given by

(2.9) H=1+ AXV cospfcosy + AyV sinpcosy
. T cosa - D - mg siny
+ AhV siny + AV [ - ]

+ (L+ 7T sina)sino | . A (L + T sina)coso - mg cosy
B my cosy Y mV

The Euler-Lagrange equations are a system of differential equations in x and ),

namely
d

(2.10) & = f(x.u)
dx _

For optimal u*, x* there is an optimal A* such that (2.10), (2.11) are satisfied
and such that

(2.12) H(x*,u*,2*) = min H(x*,u,1*)
u

at all times. This relationship is known as the minimum principle (see Athans

and Falb (1966)).
In principle we can solve (2.12) for u in terms of x, A and eliminate u

from (2.10), (2.11). The result is a system of differential equations in x and

A only,

(2.13) 9 - F(g,2)
: dt - Flxd

(2.14)  $-6x)

with mixed initial and boundary conditions on x from (2.3) and (2.4) rather than
initial conditions on both x and A. Thus, (2.13), (2.14) with boundary con-
ditions (2.3), (2.4) is a two-point boundary value problem (TPBVP). Many solu-
tion techniques solve the original optimization problem by solving this TPBVP.
Note that when tf is not specified, we obtain the extra condition
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(2.15) H(x*,A*,u*) = 0

at all timés. This extra condition can be used to find tf.

3.3 Exact, Iterative Solutions of the TPBVP
Whether the full system solution or the solution to one of the reduced-
order formulations of the problem is being sought, a numerical solution to the
TPBVP is necessary. Order reduction is usually achieved through the application
of Singular Perturbation Theory (SPT). For a system which is considered
"stiff"--that is, the time scales of some of its state variables are signifi-
t

reduction in order can be made to be a reasonably good one, if done judiciously.
Assuming, then, that the system has been reduced to a TPBVP, the solution
procedures considered in this project fall into three general categories:
(i) Steepest Descent (Gradient) Methods
(i7) Quasilinearization Techniques
(ii1) Continuation Methods Using a Parameter
These methods will be discussed in varying detail in the following sections.

3.3.1 Steepest Descent Techniques
These are the most widely used methods, and their strengths and weaknesses
are well known. Inequality constraints are typically handled by using penalty

functions. There are often convergence problems, due to the presence of state
variable inequality constraints and singular arcs. This is because of the ab-
sence of control variables in the inequality constraints or in the gradient of
the cost function. It is expected that some of these numerical problems may be
alleviated by using a "generalized gradient method" as described in Mehra and
Davis (1972). Briefly, this method uses the constraints to dictate, at each
step, which of the entire set of control and state variables are to be selected
as control variables for the next step. The gradient of the cost function with
respect to the independent variables, called the generalized gradient, is then
computed by solving a set of equations similar to the Euler-Lagrange equations.
Directions of search are found using gradient projection and the conjugate
gradient method. The procedure, then, is based on the idea that there is no
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real mathematical distinction in the use of u(t) or elements of u(t) and x(t)
as the independent or manipulative variables of the system x=f(x,u). Criteria
- for selecting the independent set include: any variable which 1ies on the con-
straint boundary should be included in the set; choosing some.of the state
variables as the independent variables often improves the rate of convergence;
the independent set must be chosen so as to retain recursiveness to avoid in-
verting large matrices.

The details of this technique are in Mehra and Davis (1972). It is an-
ticipated that algorithms based on steepest descent, even when applied to the
reduced TPBVP's, may be too slow for real time solution of any of the basic
problems. This method will be useful, however, in developing the full-system
solution.

3.3.2 Quasilinearization Methods
Basically, these methods revolve around doing a Tinearization around a
zero-order solution. Such a solution would arise from setting the "approxima-

tion parameter," ¢, to zero, as is done in SPT; or, as is done in the case of
continuation methods (next section), € is set to some €9 possibly zero, for
which the solution is readily obtained. The appeal of quasilinearization tech-
niques lies in the fact that they are far less sensitive to changes in the ini-
tial conditions than the shooting continuation methods described in the next
section. Thus, in advancing the parameter ¢ from € OF 0 to its "real" value,
generally 1, some combination of techniques based on quasilinearization method-
ology and continuation theory may be developed. This will hopefully allow the
exploitation of the advantages of both schemes, utilizing one where the other
is weak. One anticipated disadvantage of the quasilinearization-continuation
approach is the computational effort required to step the parameter ¢ along

to its final value.

Basic references on the theory of quasilinearization are Bellman and
Kalaba (1965), Dyer and McReynolds (1970), Polak (1971), and Keller (1968). As
in Subsection 3.3.1, it is anticipated that inequality constraints can be
handled by means of penalty or barrier functions. This should be true both for
this section and the following one.

Quasilinearization techniques are cast in the form of Newton-Raphson
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problems in Polak (1971). Because of the comparison of this form to the con-
tinuation methods of the next section, Polak's algorithms will be presented
here. The outline in Dyer and McReynolds (1970) is presented more directly in
terms of the calculus of variations probliem in optimal control. N
For quasilinearization, g is augmented by a third vector element. Suppose
we have a differential equation B

(3.1) - f(x.t)

with initial and final boundary conditions

(3.2) golx(ty)) = 0
(3.3) ge(x(te)) =0

Note that in the control problem, x in (3.1) would actually include both the
state x and the adjoint A. That is, x=(x,A) and (3.1) is given by (2.13),

(2.14). Let §(x0,x(-)) be the function defined by

t
(3.4)  Blxgx(-))(E) = xg +ft F(x(s),5)ds - x(t)
0

and define g from 99> 9f and § so that

§(X03x(°))
(3.5)  glxgex(+)) = | gq(x(ty))
gf(x(tf))

Thus, g maps the pair (xo,x(-)) into the pair (yo,y(-)) where Yo = (go(x(to)),

gf(x(tf))) and y(t)==§(xo,x(-))(t). In the following, let L denote the linear
space of pairs (x,,x(+)) where Xg is a vector and x(-) is a piecewise contin-

uously differentiable function of t. Then g is a continuously differentiable

map of L into itself. We will assume that ['c)g(z)/az]'1 exists for all z in a

sufficiently large subset of L, where z= (xo,x(-)). With this assumption, the
Newton-Raphson method for solving g(z) =0 is defined by
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J . . .

(3.6) 2z 7 - dy = seh

J .th Jil | i
where z is the j= ijteration for the solution. Thus, "z 1is found from Q by
utilizing the above relationship, exactly as in the finite-dimensional case
(next section). Due to the presence of x(t)e C%N[tO’tf] in z, the Newton-Raphson
method above has been formulated in a Banach space L.

Substituting the g into the above equation, rearranging terms, and dif-
ferentiating the terms associated with § with respect to time, there results

Jtl J
() S8 LA (Rl _fn]+ fR0,0, ety

1 41
90(3; (ty)) = 0, gf(J; (te)) =0

This differential system is called the quasilinearization version of the Newton-
Raphson method. McGi1l and Kenneth (1963) and Bellman and Kalaba (1965) provide
more details. The algorithm proceeds as follows:
1) Select an x(*) € C;N[to,tf] such that go='gf==0; if Xg and Xg are such
that the boundary conditions are met, then an acceptable x(t) may be

X(t) = xy + [(t-tg)/ (tet) xpmxg)s  teltgstels
2) Set j=0;

of ,J
3) For te [to’tf]’ compute f(x(t) t) and 5;—(

x(t),t)s
4) Compute x (t) by solving the Newton-Raphson differential system, in-
tegrating in a stable direction (or else, combining the technique of
Roberts and Shipman (1967), described in the next section);

5) If xl(t) is "close to" i(t) by some standard, stop;

6) Otherwise, set j=j+1 and go to step (3).

Quasilinearization techniques such as the one outlined above provide at
each step an approximation to a solution of x=f(x(t).t) which satisfies the
boundary conditions. This is a major difference between quasilinearization |
techniques and procedures outlined below. The latter, at each step, provide
an approximation to the solution and the boundary conditions which satsify the
differential equation.
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3.3.3 Continuation Methods for the Solution of the TPBVP

In this section we are interested in describing some continuation or im-
bedding methods for solving the two-point boundary value problem and discussing
their advantages over more conventional methods. To this end, we have omitted
many mathematical details necessary for a logically rigorous presentation of
this material. We hope this omission will make the presentation clearer for
~ the reader unfamiliar with continuation methods. Mathematically rigorous results
may be found in Ortega and Rheinboldt (1970).
. For definiteness, consider the following two-point boundary value problem
(TPBVP) which depends on a scalar parameter:

TPBVP: Find x(t,e), a(e) and t(e) for times t and all parameters e such
that x(t,e), a(e) are vectors in R" and t(e) is a scalar time, and such that
these quantities satisfy

(3.8) g%—(t,e) = f((t,e)t,e)

(3.9) x(0,e) = a(e)
(3°10) ¢(a(€)ax(T(€)a€),T(€),E) =0

for all ¢ and all t with 0<t<t(e).

Note that the function ¢, which maps RTxRTxR* xR
beforehand, and equation (3.10) summarizes the n+l initial and final conditions
necessary to deduce n initial conditions (the vector a(e)) and the terminal time
t(e). One can choose ¢ so that (3.8) - (3.10) represent almost any initial or
boundary value problem. 1In particular, (3.8)-(3.10) can model the TPBVP for
which the terminal time v is not given explicitly (this is the situation for
minimum time control problems).

To solve the TPBVP we transcribe the equations (3.8) - (3.10) to a system
of n+l nonlinear equations for the initial condition a(e) and the final time
t(e). To make this transcription define the function x(t;a,c) as the solution

of the initial value problem

1,1

. + . .
into R" 1, is given

(3.11) X (tsa.e) = F(x(t3a,e),tse)

1}

(3.12) x(0za,e) =
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for all t, a, €. Then we solve for a(e) and t(c) from the equation
(3.13) ¢(a(e),x(t(e)s a(e)se),t(e)se) = O

Note that (3.13) represents n+l equations which we desire to solve for the
initial state a(e) (n conditions) and the final time t(e) (one more condition).
The TPBVP of (3.8) - (3.10) has a solution if and only if (3.13) has a solution.
Thus, the TPBVP is reduced to solving the nonlinear equation (3.13). |
Different techniques for solving the TPBVP derive from techniques for -
solving the equation (3.13). Thus, let us define the function G(a,t,c) as

(3.14) G(a,t,e) = ¢(a, x(t3a,e), T, €)

and let us generically represent (a,e) by the n+l vector v. Then (3.13) takes
the more general form

(3.15) G(vse) = 0

which we solve for v as a function of e.
Let us suppose that e varies between 0 and 1. Often our problem is to
solve a difficult probiem

(3.16)  G(v,1) = 0
when we know how to solve an easier problem
(3.17)  G(v,0) = 0

Sometimes the parameter € occurs naturally in the problem (i.e., the V1scosity
in a hydrodynamic problem), but often we introduce the parameter e artificially.
In either case, the rationale for replacing the single equation (3;16) with a
family of equations (3.15) is that we may be able to continue the solution at
e=0 in (3.17) to the solution at =1 in (3.16) more easily than computing the
solution at e=1 in (3.16) by itself. For example, a classic technique for con-
tinuing the solution v(0) of (3.17) to a solution v(e) of (3.15) for >0 is to
expand the vector function v(e) in a Taylor series in €. The validity of the -
expansion requires some regularity of the function G with respect to e, but in
some cases where G does not depend regularly on € it is often still possible to
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use perturbation analysis to find a singular perturbation expansion of v(e) in
terms of e.
- As a simple but concrete example, consider the following two quadratié

equations:

(3.18) y+yi=c¢

and '

(3.19) X + ax2 =1

The solution at € =0 of equation (3.18) gives y(0) =0 or y(0)=-1. The solution
y(e) of (3.18) for >0 depends regularly on € and has the two possible power
series expansions

2
e-e + ...

(3.20)  y(e)

or

(3.21)  y(e) 2

sl -e+e~+. ..

This series corresponds to the Taylor expansion in powers of € of

(3.22)  y(e) = LA TR
and
(2.23)  y(e) = 2P IE

Equation (3.19) is not regular with respect to £ as one can see by setting
€=0; there is only one solution x(0) =1, whereas there must be two whenever
e=0. Nevertheless, one can still expand the solution x(e) of (3.19) in the
singular perturbation series
(3.24)  x(e) =1-¢+.
or

(3.25)  x(e) =-%- 1+2+. ..

which series correspond to the exact solutions
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-1 +/71 + 4¢

(3.26) x(e) = e
. and o
(3.27)  x(e) = 1= I+ 2
€
respectively.

The approximations (3.20), (3.21) to (3.18) or (3.24), (3.25) to (3.19) are
good when € is "small," but the trouble is that e=1 is not small. In fact,
the expansions (3.20), (3.21) and (3.24), (3.25) are valid only when |e| <k4.

For |e| >%, the series do not converge and one cannot use finitely many terms

of the series to approximate the exact answer. For example, if one tries to use
the series from (3.20) for =1 to approximate (3.22), one obtains the approxi-
mations y(e)=~ 0,1,-1,2,-5,14,-42,132 and so on, which become progressively
worse as one adds more terms to the series in (3.20). The exact answer is (3.22)
with €=1, which gives y(e) =.618033989....

In our examples in (3.18) or (3.19) perturbation analysis cannot continue
the €=0 solution beyond e=%. Nevertheless, there are continuation methods
which can continue the €=0 solution all the way to €=1. One such method is
the method of differentiation with respect to a parameter of Davidenko (1953).

Consider the general equation (3.15), G(v,e) =0, and suppose that there is
a solution v(e) of (3.15) which is continuously differentiable with respect to
€. Taking the derivative of equation (3.15) with respect to e gives us the
following differential equation for v:

(3.28) 6. 9+6 =0

v de €
In (3.28) the expression Gv is the matrix of first partial derivatives of G with
respect to v, and G€ is the vector of first partial derivatives with respect to
e. The initial conditions for the differential equation (3.28) is just the v(0)
given by equation (3.17), namely

(3.29)  G(v(0),0) = 0

Assuming that we can solve the linear equation
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(3.30) Gv(v,s)w + Ge(v,e) =0

for w given v and e, then we can numerically integrate equation (3.28) from the
initial condition (3.29). If the matrix Gv(v,e) becomes singular and (3.30)
has no solution, then the numerical integration of (3.28) may fail. However,
Keller (1977) presents methods for continuing the integration when G_(v,e)
becomes singular. In this case one finds that (3.28) has bifurcatiné solutions.
We discuss such bifurcations further in Appendix 3.1.

As a simple example consider equation (3.28) again. In this case (3.28)
becomes '

dy -
(3.31) (1+a2gl=1

with two possible initial conditions, either y(0)=0 or y(0)=-1. For all €20,
we can integrate (3.31) without difficulty and obtain the two solutions

(3.32)  yle) = Lol ile

from the initial condition y(0) =0, and

(3.33)  y(e) = ALt

from the initial condition y(0)=-1.

Note that Davidenko's method succeeds in finding the solutions at =1
whereas the power series method in (3.20), (3.21) fails. Using an integration
step size of h=.1 and Euler's method of integrating (3.31), we obtain the ap-
proximation .6372 for y(1) corresponding to y(0) =0. Compare this to the exact
solution y(1) = .6180....

The Newton-Raphson method is an -alternative for solving the equation (3.16),
G(v,e) =0, directly for any particular e, provided one has an initial estimate
of v(e). Recall that the Newton-Raphson method calculates successive approxima-
tions vk(e) from the recursive formula,

(3.28) v 1(e) = v () - G (v (e)se) 6y, (e),e)
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To start the method one requires an initial estimate vl(a). In essence, if -~
vl(e) is "reasonably close" to v(e), then the estimates vk(e) comphted_frpm (3.34)
converge very quickly to v(e) as k tends to infinity. The disadvantage of using
Néwton:Raphson‘s method is that we may not have an initial vy which is reason_.
ably close to the actual solution v. A continuation method such as Davidenko's
method can help overcome this difficulty.

As a specific example, consider the trivial equation

(3.35) 1-e(V€)_g

and suppose that we know that v(10) = 10 but we wish to approximate v(0) from
this initial guess. The guess v1(0)= 10 is disastrous for applying Newton-
Raphson's method. The recursion equation (3.34) for =0 becomes

v
=y +1-c¢e k

(3.36) Vil K

and we find that if vy = 10, then v2==-22015, v3==-22014, v4==-22013 and so on.
One requires over 22,000 iterations of (3.36) to approach the true root v=0.
Davidenko's method Teads to the numerical integration of the differential
equation '
(3.3 -1
with the initial condition v(10)=10. If we use Euler's method of integration
with step size h, we will require roughly 10><h'1 integration steps to reach
the approximation of v(0). Note that the approximation will be accurate to
order h. Thus, Davidenko's method leads to the approximate solution of (3.35)
ét €=0 in a reasonably few integration steps if we do not requiré;great accuracy
in our approximation. i
For future reference we now present another continuation method different
from Davidenko's method. Ortega and Rheinboldt (1970) present this method as
an example of continuation methods.
This continuation method differs from Davidenko's method in that it does
not use a differential equation to calculate v(e) at successive values of e.
Instead it uses the Newton-Raphson method (3.34) in a recursive fashion as we
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now explain.:

Let us solve G(v,e)=0 at = €15€ps- -

O’En where 0<el<ez<e3 - o€

Suppose that we have an initial estimate vC for v(0) or perhaps we know v0=v(0)."
Also assume given the sequence MysMys ..M of positive integers. From this =~
initial estimate one defines “k(Ei) recursively as follows. For 1< ksnni; 1,

define vk+1(€i) as
(3.38)  wyuq(ey) = v(e5) = G (v, (e5)se5) Gl (e5) e

for k=1 and i= 1 define vl(e ) as v  This technique operates by

m, 1 €i- 1)
recursively ca]cu]at1nq Newton- RaDhson approximations of the equation G(v, 81)==Qr
by using as an initial estimate for v(ei) the approximation of v(ei_l) found, -
from so]ving G(v,ei_1)==0. By suitably choosing the €4 and the Mis one can
continue a solution of G(v,0) =0 to a solution of G(v,e) =0 for relatively large
values of €. Accuracy depends on how close together one takes the €5 and how
large one takes the m..

The Newton-Raphson technique is a fast converging approximation method -
provided that the initial estimate is close to the exact solution. In this case,
the error at each step is reduced by squaring. That is, the error 6k+1 at the:
k+1 iteration is approximately 5k2’ and thus, convergencé is very fast. A
continuation method such as Davidenko's method is inferior to Newton-Raphson's
method from the standpoint of accuracy with respect to computation speed. The
Davidenko method makes a final error proportional to the integration step size
h in the integration of (3.28) (or proportional to h* for a>1 if a better in-
tegration schemex}han Euler's method is employed). .If one tries to obtain good
accuracy by choosing h small, the integration time may be quite long. For ex-
ample, numerically integrating (3.37) to obtain the solution v(0) of (3.35)-to
four decimal places accuracy would require about 105 integration steps using -
Euler's method of. integration.

However, although the continuation methods are inefficient in computing
highly accurate solutions, these methods are much less sensitive than Newton- -
Raphson to the initial estimate of the solution. ’

Similarly, continuation methods are not as efficient as perturbation ex- -
pansions when the perturbation parameter is small. On the other hand, continuation
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methods such as Davidenko's method provide solutions even when the perturbat1on
parameter is large.

Ideally, one might use a continuation method together with a method such
as Newton-Raphson or perturbation analysis. For example, one might first use
Davidenko's method with a modest integration step size to compute an approxima-
tion reasonably close to the exact solution. Then, using Newton-Raphson's
method and using the Davidenko approximation as an initial estimate, one could
obtain a very accurate approximation of the exact solution. Such an algorithm
is described in Appendix 3.2.

Having presented these different continuation techniques for computing the
solution of G(v,e) =0, we now show how to apply these techniques to the TPBVP.
There are basically two continuation methods for solving the TPBVP which corres-
pond to the two continuation methods for solving the equation G(v,e)=0. Kubicek
and Hlavacek (1973) use Davidenko's method to solve the TPBVP, and Roberts and
Shipman (1967) use the continuation version of Newton-Raphson to solve TPBVP.

Kubkcek and Hlavacek Algorithm

They also call this method general parameter mapping or GPM. The function
G is given by equation (3.14) and then the TPBVP is solved by solving (3.15).
Kubicek and Hlavacek do this by using Davidenko's method--that is, by solving
the differential equation (3.28). To use Davidenko's method, we must compute

¢a+¢x'xa
¢X.XT+¢T

(3.40) G (a,T,e) = ¢, = x_* ¢ l;

G. and G_ as follows:
v €

(3.39) 6 (as75€)

and

The subscripts in equations (3.39) and (3.40) denote partial derivatives. Thus, -
¢ --42 is the (n+1) xn matrix of first partial derivatives of ¢(a,x,p,e) with
respect to a (remember that ¢ takes its values in Rn+1 and a is a vector of R").
Similarly, Oy is the (n+l) xn matrix of derivatives of ¢ with respect to x; Xa

is the nxn matrix of derivatives of x(tj;a,e) with respect to a. The expres-

i X X . .
sions x_ and X denote the n-vectors BE-and e Likewise, ¢T and ¢€ denote the

- ¢ ¢
(n+1)-vectors o and e
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From the original formulation of the problem, one can find ¢, ¢x’ ¢a’ ¢T

and ¢€. However, to compute Gv and GS, one needs X, Xqs Xp and x¢, and one
must integrate (3.11), (3.12) directly. That is, one integrates (3.11), (3.12)

to t=1 to obtain x(t3;a,e). Then xT(T;a,e) is given from (3.11) as

(3.41)  x_ = f(x(132,€),75¢)

To obtain X3 and X, we differentiate (3.11), (3.12) with respect to a and e re-

spectively. Thus, X5 is the solution of the 1nitia1 value problem

oX

(3.42) —2 = fx(x(t;a,e),t,e)-x

ot a

" (3.43) xa(O;a,s) = I

where I is the nxn identity matrix. Likewise, X is the solution of the initial
value problem

X

(3.44) 5?5 = fx(x(t;a,e),t,e)-xE + fe(x(t;a,e),t,e)

(3.45) xE(O;a,e) =0

Thus, an algorithm for solving the TPBVP (3.8), (3.9), (3.10) for 0<e<1
might be the following:

1. Solve the problem for e=0. Set €<0 and a(e) =2y t(e) =15 Choose
integration step size h (for integration with respect to e).

2. For e, a(e), t(e) given, compute x, Xgs X and X from integrating
(3.11), (3.12), (3.41), (3.42) - (3.45).

3. With these values of €, a(e), t(e) and x, x
(3.39) and (3.40) to compute G_ and Ge‘

4. Using some numerical integration scheme on (3.28), compute
%§-= %%—, %%E) and use this to evaluate (a(€+h), t(e+h)).

5. Update ¢ to eth. If €21, stop. If e<1, return to step 2.

a® Xoo x€ from #2, use

Roberts and Shipman
Roberts and Shipman (1967, 1968) solve a TPBVP
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dx _
(3.46) - f(x,t), O=sts ty

(3.47)  x(0) =
(3.48) x(asx(ty)) = 0

where Y is given by allowing the terminal time to vary from 0 to tl and keeping
all other conditions the same. In terms of the general formulation (3.8), (3.9),
(3.10), Roberts and Shipman solve the problem

(3.49) g% = f(x(tse),t)

(3.50)  x(0,¢) = a
(3.51) x(a,x(t(e)se)) =0, 7t(e) = ¢

for all ¢ and all t such that O<t<<t(e)=e. Thus, Roberts and Shipman allow
Just the final time T to be the parameter e, and they solve the original problem
(3 46) - (3.48) by varying e from 0 to ty in (3.49) - (3.51). The continuation
method they use is the extension of Newton-Raphson's method we described for
solving G(v,e)=0. Since this continuation method is easily applied to the more
general problem (3.8) - (3.10), we do this rather than treat the specific problem
Roberts and Shipman (1967, 1968) use in their papers. Nevertheless, for future
reference we will refer to this continuation solution of the general TPBVP as
the Roberts-Shipman method.
The method consists of applying the equation (3.38) to solve G(v,e) =0 when
G is defined by (3.14). One obtains Gv from (3.39) just as in using Kubicek
and Hlavacek's GPM method. This requires numerical integration of the equations
(3.11), (3.12) and (3.41) - (3.43) just as before. One possible algorithm to
solve the TPBVP using the Roberts-Shipman method is then the following:
1. Solve the problem for €=0 to find 35> Tge Choose eo==0,
0-<el<<52 cee Eps and choose positive integers m. s l<isn. Set
i=0, k=0, a (e;) =ag, 1, (e;) =14
2. For e, ak( 1.), Tk(€1) given, compute X, xj, x_ from (3.11), (3.12),
(3.41) - (3.43).
3. With these values of €y ak(Ei)’ Tk(Ei) and x, x> X from #2, use
(3.39) to compute G-
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4. Invert G from #3 and evaluate (ak+1(€i)’ ri+1(ei))szvk+1(si) from
equation (3.38) (the Newton-Raphson step).

5. Update k to k+1. If k=|ni, go on to step 6; otherwise return to
step 2.

6. If i=n, stop. Otherwise set ao(€1+1)==ak(€1) and TO(€i+1)=‘Tk(€i)
and reset k to 0; set i to i+l and return to step 2.

Continuation or imbedding methods have long been used to prove existence

theorems for operator equations. Ortega and Rheinboldt (1970) give a nice
discussion of the method with many historical notes and references. Ficken (1951)
contains references and notes on the literature previous to 1950, including some
from the last century.

Lahaye (1934) and later, independently, Davidenko (1953) first applied con-
tinuation methods to the numerical solution of nonlinear equations of the form
G(v,e) =0. Davidenko introduced the method of differentiating G(v,e) with re-
spect to the parameter e to obtain a differential equation for v.

More recently, the method of continuation has been used to solve numerically
fixed point problems. See Kellogg, Li and Yorke (1976) for example. Rigorous
and powerful mathematical treatments of the continuation method rely on topolo-
gical homotopy theory.

A preliminary study of simple nonlinear problems indicates the method of
differentiation with respect to a parameter, Davidenko's method, when used in
conjunction with perturbation analysis or a Newton-Raphson method, offers a
powerful numerical technique for solving nonlinear problems. The main advan-
tage of the continuation method is that it permits ome to approach an exact
solution* even when the initial estimate is not close to an exact solution. If
one uses a method such as Newton-Raphson together with the continuation method,
then one can also achieve good computational efficiency. The essence of the
technique is to use the continuation method to obtain a rough first estimate
and then use Newton-Raphson to refine the estimate. See Rheinboldt (1978).

Many other variations are possible. For example, Keller (1976, "Bifurca-
tion Theory and Nonlinear Eigenvalue Problems," unpublished Tecture notes, Cal-
tech) poses a continuation problem in terms of an equation G(v,e) =0 where v is

*This includes all local minima which satisfy the first order necessary con-

ditions of optimality. 35



an element of a Banach space and G(-,c) is an operator on that Banach space.
Such an approach allows one to treat the TPBVP as a nonlinear operator equa-
tion on the Banach space of solution functions x(+,e) of (3.8)-(3.10). Al-
though seemingly more complicated than the approach of Kubicek-Hlavacek or
Roberts-Shipman, this infinite dimensional point of view may offer the advan-
tage of a numerically more stable solution algorithm.

The continuation methods seem very promising for application to the non-
lTinear TPBVP which appear in optimal control problems, and the technique
deserves wider circulation.

Example
To see how continuation methods might be applied to aircraft trajectory

optimization, consider the planar minimum-time-to-climb problem of Ardema (1976).

Because of the absence of terminal constraints on horizontal position, the

variables x and y are unnecessary. Also, the problem is solved in the vertical

plane, so that the heading, B, and roll control varijables are omitted. Thus,

h, y and V remain as state variables and velocity V is replaced by energy.e.

Also, thrust T is assumed constant, so that L (or a) is the only control variable.
This reduced system is of a dimension six which would allow a relatively

inexpensive means of verifying and developing the various computational al-

gorithms. The TPBVP for this system looks like

x = f(x(t),n,e)
where
x = (hyyseshpsh 0g)
and
h =V siny
Vy = L* - cosy
e = V(T-D)
. . 2 P
h = Ap(g/V)siny - A (V7)) (9/V) (L* - cosy) - Ag 5F
AY = -AhV cos - AYs1ny/V
o _ 2 - _ —B—R
Ap = -Ah(l/v) + AY(l/V Y(1/V)(L* - cosy) AE S
where
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p=V(T-D)
D = D(L*2,h,e)
and
eA
L* = ———%%— » the optimal control.
AEV B

In the expression L*, B=B(M) is an induced drag parameter, suitably dimension-

alized for the available tabular data, and £ is the parameter used as the '

independent variable for solving the vector of unknown initial conditions, n,

in the GPM method of Kubicek and Hlavacek (1972). 1In this example,

n= (Ah(to),AY(tO),Ae(tO)), the initial values of the three adjoint variables.

The € =0 solution would be a starting point. (Note that this means L*=0.)
Other parameters are possible; for example, Breakwell (1977) uses

g'= 1/(2(L/D)max

drag term, so that the Hamiltonian would be linear in L for e' =0, producing

a singular arc. Both formulations will be considered.

) for the same problem. This is a coefficient of the induced

The boundary conditions are

h(to) = hO’ Y(to) = YO(E)

e(to) eys h(tf) = te

e(tf) efs AY(tf) =0
The vector n defines the unspecified initial conditions.

This problem, then, is in a form to be solved by GPM, starting from eo==0
(or eé). The algorithm involves integrating the parametric system

oF
oE

jalfal
]

= I (n,e)

where

Fi(x(tf’n9€)) =0

is the itb terminal boundary condition resulting from an integration of the
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dynamic system to tf from a given n, and
Pn(n,e) =" the Jacobian'{aFi/an}

In this formulation the integration occurs for all e in [eo,ef], where Ef
is the desired value for . Note that, at each step in the integration, it is
necessary to integrate the dynamic system to tf, in general. (This may be re-
laxed to every k—b step of ¢ if convergence is good.) The differential equations
arise from applying the implicit function theorem to the system Fi-O.

Ultimately, it is desired to designate € as the singular perturbation para-
meter. The application of schemes similar to GPM to this problem is not as
straightforward, because in this role, €=0 reduces the order of the system.
However, it is possible to transform the problem so that the scaled time para-
meter,'rét/e, is the new independent variable in the dynamic system. The
solution could then proceed from €=0 as follows: with =0, compute the Otb—
order solution, including boundary layer solutions at both to and tf. Boundary
layer matchings of solutions are necessary to assign values to system parameters
to insure a stable integration. This Oth-order solution for x(t) could then
be the first iteration in a continuation process, which would advance € from 0
to a value small enough so that a first order linearized expansion is adequate.

We discuss continuation of singular perturbation problems further in
Appendix 3.1. In addition, Appendix 3.1 discusses the problem of bifurcation
in continuation. Appendix 3.2 describes a general continuation algorithm which
we have implemented and which is based on the work of Kubicek (1976) and Keller
(1977). Appendix 3.3 presents some simple numerical examples of TPBVP's solved
by continuation. Finally, Appendix 3.4 contains a large bibliography of con-

tinuation method references.
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APPENDIX 3.1
BIFURCATION AND SINGULAR PERTURBATION PHENOMENA IN CONTINUATION

The basic continuation problem is to solve the equation
(1.1)  6(x2) =0

for the vector x in terms of the real parameter A. If B is a Banach space and
G maps BxR into B, then we wish to find the trajectories A= x(XA) in B which
satisfy

(1.2) G(x(A),A) =0

for all parameter values ). For example, (1.1) might be the nonlinear equation
for the missing initial values in the TPBVP. In this case, B would be a finite
dimensional space, B= R". On the other hand, one might treat the entire trajec-
tory control and state trajectory as a vector in an infinite dimensional vector
space B. In that case, (1.1) would be a nonlinear operator equation on the
Banach space B given by the Euler-Lagrange necessary conditions for the trajec-
tory optimization problem. It appears that this infinite dimensional point of
view offers the advantage of numerically more stable solution algorithms.

The method of differentiation with respect to a parameter first discussed
by Davidenko (1953) solves the equation (1.1) for all values of the parameter A
by differentiating equation (1.2) with respect to A to obtain
(1.3) 2 (x(0.0) F+ 8 x00.) = 0
Equation (1.1) is first solved at some value of the parameter A, say A= 2 and
the solution x(xo) is used as an initial condition from which to integrate the
equation (1.3). The integration may proceed as long as the Frechet derivative
%% (x(A),A), which is a linear operator from B into B for a given value of x
and A, is nonsingular and may be inverted to solve for the derivative %%-from
(1.3). If g%-(x(x),x) should become singular for some value of X=1,, then a
bifurcation has occurred at Al’ indicating a sudden change in the nature and

number of solutions of (1.1) in the neighborhood of Aq-
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In Figures 1 and 2 typical bifurcations* are illustrated. In Figure 1
there is one solution of (1.1) for values of X near Al such that A~<A1, and
there are two solutions of (1.1) for values of A near Al such that A:>A1. In
Figure 2 there is no solution of (1.1) for values of A near M and such that
A>>A1, but there are two solutions for values of A near A such that-A<:A1.

The proper treatment of bifurcations is extremely important in applying the
continuation method to the solution of nonlinear problems for which there may
be mul=iple solutions. Such a situation occurs, for example, if the Euler-
Lagranve necessary conditions allow multiple extremal solutions of the trajectory
optimization problem. One attractive feature of the continuation method is that
it will yield all of the multiple solutions--provided that one has an algorithm
that can handle bifurcations. We have implemented an algorithm due to Keller
(1977) which handles both bifurcations pictured in Figures 1 and 2. For ex-
ample, in Figure 1 the algorithm would trace out the left branch until A ap-
proached kl; then it would indicate the singularity of gg-(x(xl),xl) and proceed
to trace the two right branches. In Figure 2 the algorithm would trace out the
upper ‘eft branch until the parameter value reached Aqe It would then indicate

a singularity in Eg-(x(Al),Al) and reverse direction of the parameter A to trace

the Tower left brgzch. This continuation algorithm is described in more detail
in Appendix 3.2.

In solving a nonlinear equation G(x)=0 by the continuation method, one
first mbeds this problem in a one-parameter family of problems represented by
(1.1) ‘or which the parameter value X =1 gives the original problem and the
parameter value A =0 gives a problem with a known solution. If one continues
all of the solutions of (1.1) at A=0 to values of X for which x>0, then one
is gua~anteed to find all the solutions of (1.1) at values of A>0, provided
that one follows all the branches from bifurcations. In this way, one finds
all the solutions of the original nonlinear problem G(x)=0. In the case of
an optimization problem, such as the trajectory optimization problem, one ob-
tains all the extremal trajectories which satisfy the necessary conditions, and
one may pick out the optimal solution from these extrema.

In addition to following all branches from bifurcations, it is also impor-
tant to know all the initial solutions at A=0 and to continue each of these

*See note for Figure 2.
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>
A

Figure 1.-Example of Bifurcation Point.

S

-~
A

Figure'z.-Example of Limit Point.

NOTE: Unhappily, as in the case of the word "singular," "bifurcation" has come
to have at least two distinct meanings. As opposed to the above definition, sev-
eral authors, e.g. Keller (1977), designate only the Ay in Fig. 1 as a bifurca-
tion point, making it a subset of our definition. In this case, Ay in Fig. 2

is named a 1imit point. The cases of Fig. 1 and Fig. 2 are distinguishable
mathematically, as will be shown in Appendix 3.2,
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solutions to values of A>0. One usually selects the one-parameter imbedding
(1.1) so that it yields only one solution x(1) for A in a neighborhood of 0.
However, it sometimes happens that (1.1) has no solution at A =0 although it
has a unique asymptotic behavior as A-+0. Such is the situation in problems
such as our aircraft trajectory optimization problem, in which the parameter A
represents a singular perturbation near 0. For example, the parameter X is
denoted by € in the aircraft optimization problem represented by (4.2.46),
(4.2.47) in Section 4.2. These equations have no solution at A=0 since it is
generally impossible to satisfy all the boundary conditions for the reduced or-
der (A=0) equations. However, the optimal solution has a well-defined, unique
asymptotic behavior as A->0. In this case, it is still possible to apply the
continuation method successfully by starting the process at a AO:>O in a neigh-
borhood of A =0 and by using the asymptotic approximation of the solution x(AO)
as the initial condition in the differential equation (1.3). To do this, one
may have to make preliminary Newton corrections to obtain a more exact initial

condition at AO’ but for small nonzero values of the parameter X the asymptotic
approximation is very accurate and only a few Newton corrections are usually
necessary. The implemented continuation algorithms feature such preliminary
Newton correction, as well as Newton correction after every prediction step, to
improve accuracy to a pre-specified tolerance.

Continuation from a singular perturbation will be effective when the asymp-
totic approximation is good for A near A=0 but not very good for A near the
desired solution at A=1. In particular, this technique will improve the
asymptotic approximation to the aircraft optimization problem when the total
range for interception decreases below the Tower 1imit for validity of the
energy state approximation.*

*This Tower limit is about 160-170 Km for the F-4 example problem.
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APPENDIX 3.2
GENERAL CONTINUATION ALGORITHMS

A series of numerical algorithms for the solution of nonlinear systems of
the form (A3.1.1) has been developed for application to such problems as air-
craft trajectory optimization. Ultimately, it is hoped to combine these al-
gorithms into one system. In this way, the simplest (and presumably the most
time/core-efficient) algorithm may be selected initially, switching to more
complete algorithms as the numerical development of the problem warrants. The
basis for the developed algorithms lies principally in work by Klopfenstein
(1961), Kubicek (1973, 1976), Keller (1977) and Rheinboldt (1977).

Each of the aforementioned researchers realized that effective implementa-
tion of the parametric system of Davidenko (A3.1.3) requires adequate treatment
of the Frechet derivative

(2.1) F(x(2),A) = = (x(A),2)

when A is in the neighborhood of some point xl at which F becomes singular. F
is singular at either point M in Figure 1 of Appendix 3.1 (a "proper" bifur-
cation point) or Figure 2 (a "limit" point). Rheinboldt and Keller have de-
veloped a means of extending the continuation through the Figure 1l-type bi-
furcation point. This point differs from the 1limit point of Figure 2 in a
mathematical sense, as will be seen below. Limit points are somewhat easier
to deal with, and so will be discussed first.

As can be seen in Figure 2 (especially if one imagines x and G to be scalar),
dx/d)\ > as A>Aq from Ag* Hence, F must be singular at A for the trajectory
to be meaningful. It is also precisely at Aq where the parameter A loses its
monotonic property. Because the connection is not coincidental, it seemed
reasonable to augment the problem by introducing an arclength parameter, say t,
which is by nature monotonic. The problem is augmented in that the system
parameter A is now itself a dependent variable in the arclength parameter. Thus,
if xe R", the augmented system is based on the solution of

(2.2) G(x(t),A(t)) =0
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or

(2.3) G(y(t)) =
where

(2-4) y = (x’}\)a yERn+1

Since there are now n+l unknowns, (2.2) must be augmented by the particular
arclength relationship. Both Klopfenstein and Kubicek use a purely Euclidean
relationship (called a "normalization")

(2.5) Ny (x:2,t) = 0 = 24 inz + 3221
where
(2.6) () A d( )

dt

The system can now be solved, as follows:

(2.7) 8¢ - g—- +385 -9

3

s

Equation (2.7) 1is the starting point for both methods of Klopfenstein and Kubi-
cek. It may be rewritten

(2.8) Ay = 0

where

o) xe[2. 8] [n 2]

Equation (2.8) is a system of n equations for the n+l unknown elements of y.
Klopfenstein does not distinguish between the X; and A, considers A==xn+1.
His method depends on finding an Xp+1 for which F remains non-singular. Then, -

e _ ~1(3GY\; _ _-1/936\:
(2.10) k= -F(8E)i - -t (3 )k,

Equation (2.5) then determines in+1'
The method of Kubicek is more "robust" in that, while he also considers A

a4



and x functionally equivalent in terms of t, the most non-singular nxn sub-
matrix of A is used at each point for the matrix inversion operation. This

is achieved by Gaussian elimination with controlled pivoting. By this procedure,
one of the n+l columns of A for which A is "most singular” is eliminated, say
column k. Then X < Yy plays the role of the parameter X, instead of always

using Yp+1° Equation (2.7) is then rearranged and solved for the n &1, i=zk:
S dG L . e 36 s _
(2-11) - =F [y.] + — Y, = 0
t ki ik Byk k
where
) W1 Wy Wn+1
( 361
2.12) F, = —
k ayl
26 By 2 n
B! Wi-1 Vi W]
I -1 3G
(2.13) ¥, S

Note that F, is nxn, a square matrix. Equation (2.13) is similar in form
to (2.10), but more general.

As before, the 91 are substituted into (2.5) to solve for the final element,
Y- The sign ambiguity is handled by selecting a sign at the starting point,
Yoe t =0, which is consistent with the problem, realizing that t increases
monotonically. For example, if rudder deflection, 8r, is selected as Yk and
has the value +6rmax at the starting point, then the negative sign on &k would
be selected, so that continuation may proceed into the acceptable range of ér
values.

The Gaussian elimination procedure works as follows: all of the elements
of A are scanned for the one with the largest magnitude. This element becomes
the pivot point for the e]ementary matrix row operations which are used to zero
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all remaining elements in the column of the pivot element. This column is

saved and the scanning process begins again, for the remaining columns. This
process is only done n times, leaving untouched the column whose elements are
consistently the smallest. The untouched column becomes column k. The remain-
ing n columns can be rearranged to produce a diagonal matrix, whereuﬁon inversion
is straightforward.

Again, the method works well at 1imit points because, say at xl in Figure
2 of Appendix 3.1, XA would cease to be the parameter, but would be replaced by
one of the X; It should also be mentioned that provision can be made for in-
fluencing the choice of Y by scaling each of the columns of A by a scalar, thus
reducing their magnitudes.

Given that the nt+l &1 have somehow been found at a certain point te [0,1],
the continuation process of Kubicek evolves essentially by integrating the sys-
tem (2.13) and (2.5) for y(t). The continuation proceeds numerically by a
predictor-corrector sequence. At the starting point (t=0, x==xo), the X; are
found to the required precision using Newton-Raphson. Then, Adams-Bashforth
variable order (<4) is used to advance all of the y;--i.e., Xy and X--to a pre-
dicted value. At this new point, Yk is found as described above, and Newton
corrections are made on the Yis i#k, until reasonable convergence is assured.
Typically, no more that three or four Newton-corrector steps are needed at
each point. The Newton-corrector formula is

where y(') is an nx1 vector of all y., i=k.

The Klopfenstein/Kubicek algorithm was also tested on another project. In
this application, equilibrium solutions of an aircraft are generated in both
developed spin and roll departure flight regimes. The continuation system is
the equations of motion, with the derivatives set to zero. One of the three
aerosurface controls is chosen as the nominal continuation parameter, and the
other two are set to fixed values. For spin analysis, an eighth order system
of equations is needed, because of coupling effects arising from the need to
employ the full nonlinear expressions. (The roll departure regime requires
only a fifth order system, but is still highly nonlinear.) However, the con-
tinuation algorithm described above is able to solve for the equilibrium surfaces
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quite readiiy. This algorithm is also the basis for some of the two-point
boundary value problem {TPBYP) continuation exampies which are described in
Appendix 3.3. For TPBVP applications, the system {2.9), (2.13) operates in
function space rather than Euclidean n-space. The significant difference is
that, for every continuation step ("outer” integration}, a full solution must
be generated between the two boundary points by quadrature {"inner" integration).
While the function-space process is thus considerably more complicated, the
continuation itself is non-iterative; that is, the continuation parameter moves
directly from its initial to its final value. There is no retracing or repe-
tition of this outer loop quadrature.

For flight trajectory optimization problems, the TPBVP system consists of
adjoint, or influence, functions whose initial conditions are unknown in general.
These, then, become the variables x in (2.2) and A, the continuation parameter,

is usually chosen to be a physical parameter such as (L/D)ma or air density.

This choice enables a reasonably simple solution to be foundxat A=0. See
Appendix 3.3 for a discussion of continuation methods applied to the solution
of TPBYP's.

At this point, it is probably easy to appreciate that it is quite often
convenient to evaluate the elements of A numerically, rather than to pre-compute
analytic expressions. This is particularly the case when simulating flight
vehicle trajectories, because such expressions involve terms containing tabular
data. Analytic expressions for such terms are typically very complicated.
Therefore, a numerical differentiation algorithm has been developed and is now
a part of our basic continuation algorithm. It may be invoked at the user's
option.

The algorithm which thus far has worked most efficiently is the following:
to compute F:é.%% at x=xp, fit a cubic spline to G(x) at the following five
points (knots):

(2.15) G{x+1iA), i=0,%1,x2

Once this fit is made, the slope of the spline function at Xq becomes the ap-

proximation to F(xo)élf In general, G may be a vector and x a scalar. If

0
x e R, the extension is obvious; one merely performs the operation n times for

gach x..
J
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[t is important to use a value for A which is small enough to adequately
represent FO’ yet not so small that numerical difficulties result. Thus, we

require*
(2.16} 1G(x) ~ G{x+4a)] = 0(e)

where £=0.0001 has been shown to produce good resuits.

The algorithm for selecting A is as follows:

1) initialize i=1

2) set Ay =€ (this is exact if F(x0)= 1)

3) compute G, = |G(x - G{x O*—Ai)[

4) 10~<G <10€, aoc to 7

5) if not, set A4y =4 (éi—)

Note that GT= 0 where the slope is infinite

6) set i=1+] and go to 3

7) set A= A and do the spline fit
1f a solution for A is not obtained after five jterations, a warning is printed
and A s set to AS'

As mentioned above, the Kubicek algorithm is unable to solve automatically
for all of the branches which emanate from the bifurcation point A shown in
Figure 1 of Appendix 3.1. We have implemented, therefore, a method based on the
vork of Rheinboldt (1977) and Keller (1977) which can not only continue the
ariginal branch accurately past Ays but also accurately evaluate Al and the
slope of the “secondary" branch at Aq- With this slope, continuation along the
secondary branch can proceed as usual.

Keller's algorithm begins with the system (2.2) augmented by the "pseudo-
arclength® normalization

A

(2.18) N, 2 x|

o (x=xg) + (1-8)3(x=2g) - (t-t)) = 0

where t is the arclength parameter, & is a constant selected such that 0<8 <1,

and (XO’AO)::YO are the values of the unknowns and the parameter at tO' The

*If GeR", {2.16) is modified:
n

(2.17) & ¥ 16.(x) - G, (x+8)] = 0(e)
=1
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augmented system is now:

(2.19)  H{y,t) 2 [ ;{;,t ] =0

where

(2.20) y = [i] . ye RML

Keller has shown that, using Ny as given by (2.18), the quantity

L\BH

(2.21) 3y
is nonsingular if and only if

a) F==gg is nonsingular; or

3G
b) 3N

Case {(b) corresponds to a 1imit point. At such a point (e.g., Figure 2 of Ap-

¢ R(F), where R(+) denotes range space.

pendix 3.1) there is no intersection of branches, but dx/di-«. However, solu-
tion of the augmented system {2.19) continues normally.

If neither condition {a) or {b) holds at some point }1, then B is singular
and hl is the type of bifurcation point shown in Figure 1, where two or more
branches intersect. As mentioned above, Al is skipped over, in order to continue
along the initial branch. Any predictor-corrector method will suffice for this.
Continuing the solution along the second branch then proceeds as follows*:

1) compute 5G/5x (singular) at the bifurcation point, and get an approxi-

mation for dx/dt and di/dt.

2) compute the eigenvalues and eigenvectors of 3G/5x%. Call the eigenvector

corresponding to the zero eigenvalue ¢0, and the others ¢1""’¢N—1'

3} compute oy in the following:

(2.22) (36/3x)ey + 36/3% = 0
where ¢, is a linear combination of the vectors d4,.....dy ;. The
vectors ¢q and ¢N define the plane in which a solution for 3x/3t can
appear.

4) solve for the coefficients T and Ty in:

*This is Keller's (1977) "Method I1."
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)]

(2.23) 2, = 141+ loyll®)

- 2

ty = 7o llogl
6) now we seek a solution of the form
%o T elTgog* Tyl * ¥

—~—
o
[aS]
()]
pd

It

-l
I}

AO + e?N +n
where XG’AO is the solution at the bifurcation point.

7} finally, starting with V=0, n=0, use Newton’s method to find a solu-
tion to the equations:

(7.26a)  G(xi.al) =0

(2.26b) (?0¢5 + ?N¢ﬁ)v + ?Nn =0

The ¢ terms in (2.25) move the possible solution away from the first branch, and
equation (2.26b)} insures that the free variables VY and n do not bring the solu-
tion back. Thus, any solution found must be on the second branch of the solution
curve, and can be used as a starting point for a normal continuation solution.

This method has been implemented and rum on test problems. Because of its
complexity, especially in the use of TPBYP continuation algorithms, much effort
» reguired to select numerical parameters and guadrature techniques which will
+tficiently deal with the system at hand.



APPENDIX 3.3
APPLICATION OF CONTINUATION ALGORITHM TO TPBVP: NUMERICAL EXAMPLES

The algorithin described in Appendix 3.2 was applied to solving three ex-
ample TPBVP's by the shooting method. The theory behind the shooting method is
presented in Subsection 3.3.3 and we refer the reader there for details of the
basic method. Note that the present method of solving the TPBYP by shooting
uses both the Davidenko method of differentiation with respect to a parameter
described by Kubicek and Hlavacek (1972a, 1972b, 1973} and Kubicek (1976) and
the Newton-Raphson method described by Roberts and Shipman (1967, 1968) to-
gether in one algorithm.

Example #1
This is a nonlinear second order two-point boundary value problem which we

solved by continuation with respect to the final time as described in Roberts
and Shipman (1967, 1968, 1972). The problem was to solve

du1
‘a?—= Ul Tn U2
du2

(3.1) 'a'-f'— = U2 in Ul

ul(o) =1, uz(T) = e

for several given values of the final time T. The problem was solved numerically
by continuation with respect to the final time T, starting at T=0 where the
problem reduces to an initial value problem with u1(0)= 1 and u2(0)==e. The
problem in (3.1} was chosen to be the nonlinear transformation of the linear

problem
dx
1.
dat T2
dx
2 _
(3.2) ‘(E—- X1
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via the transformation u, = e*1 and U, = e*2 5o that we would have an exact solu-
tion to the problem (3.1). 1If b{T) denotes the missing initial condition

u2(0) =b{T) in (3.1) for the problem with final time T given, then the function
b is given by the formula

(3.3) b(T) = exp(2/(e' +e 1))

The numerical continuation solution agreed with (3.3) exactly in all displayed
decimal digits.

Example §2
This is also a nenlinear, second order TPBVP but the final time is fixed

and an internal parameter is used for continuation. This example represents the
equilibrium equation for the heat distribution in a rod of Tength x=1. The
problem is solved by continuation in Wasserstrom (1973) which is an excellent
review of continuation methods in general. The equations for the problem are

dy1

dx Yo

it

dy2 N
(3.4) i Aexp(yl)

YI(O} = yz(l) =0

where X is the continuation parameter used. We applied continuation to the
shooting method to calculate numerically the missing initial condition
y2(0)= b{A) for vaiues of the parameter X between 0 and 1. Note that for A=0
the problem has a trivial solution, y(x)=0 for all x.

The exact solution of (3.4) is given by the formula

(3.5)  y(x) = In([n’/2nJsec®(FIx~ 1))

where m must satisfy the implicit eguation

yd
(3.8) %K-secz

=3
1
[

The missing initial condition b{A} is given in terms of m and A as
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(3.7) b{A)} = -m tan(n/4) = —1/21-m2

Again, the numerical continuation solution agreed exactly with (3.7) in all
displayed decimal digits.

Note that our continuation algorithm used numerical differentiation to
calculate the partial derivatives necessary for the shooting method instead
of integrating four extra variational differential equations as Wasserstrom
does in his paper. The numerical differentiation simplifies the programming
requirements and will reduce the computation required in large order problems.

Example #3
The Tlast example is a trajectory optimizafion problem for a simplified

missile interceptor taken from the paper of Schneider and Reddy (1974). Al-
though the aerodynamic model is extremely simplified, this problem is a good
example with which to test out the continuation algorithm before attempting the
aircraft equations. The state equations in this problem are nonlinear and
fourth order, resulting in a nonlinear, eighth order TPBYP. The nonlinear,
fourth order state equations are

dx

_1
a ~ "3
o
at " *a
X
‘a't—3 = -s—:x3ve"x2/h5 + ul
dx
4 _ ~Xo/hs )
qt - EX Ve + u2 9.81

where v = V(XBZ-FXQZ).

In the equations (3.8), Xq represents a horizontal range variable and Xo
is the height variable. The variables Xq and X, are the velocities correspond-
ing to X1 and Xo respectively. The variables uq and u, are the controls
(thrusts) for the problem. The parameter h is a height scale which is taken
as 6705.6 m in this problem. The parameter ¢ is equal to %—ps where Pg is the
sea level air density and b is the inverse ballistic coefficient for the missile
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interceptor modeled by (3.8). The optimality criterion for this problem is
the simplest quadratic criterion,

;
(3.9) f (u® + uy?)dt
0

where T is the fixed final time. The Euler-Lagrange necessary conditions give
the following nonlinear, eighth order TPBYP:

(=%
*

1 _
a "3
dat T %4
dx X
Hfg" EXgve X2/ hs 7;
dx X
HEE~= ~ex ve X2/ Ns _ 7?—- 9.81
(3.10) dx
™5 _
dt
dx
_6 __ev ~Xy/h
@ h ¢t S[x7%3* %g¥q]
dx Xo\ 2 X%
T x5 e [“(TS) ]VE*XE/hS *EXg [ 423] ve X2/Ms
v
dx Xa X X\ 2
a%§~= ~Xg + EXy [ iZB] ve *2/hs 4 ex8[}+-(-€£> ] ve %2/ hs

where xl(O), XZ(O), x3(0), x4(0), xl(T}, xz(T), are given and x7(T)==x8(T)= D.

As in (3.8}, v = (x32

Xg are the adjoint variables corresponding to Xis Xos Xg and X, respectively.
We solved (3.10) by shooting for the missing adjoint initial conditions x5(0),

+x42). In equation (3.10), the variables Xgs Xg» X7 and

xﬁ(O), x7(0) and xs(O). The parameter e (proportional to the inverse ballistic
coefficient) was used for continuation from e=0. Note that the € =0 solution
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corresponds to an interception problem with no air density--i.e., a vacuum
solution. Figures 1, 2, 3 and 4 show the range-height trajectories for four
values of the ballistic coefficient ranging from « to 3.1266x 107 Nm™2. This
corresponds to continuing the parameter e from 0 (the vacuum solution) to
1.9220><10-4 m'1 The final time T is 20 sec and the given initial and final

conditions are x2(0) ='x3(0) = x4(0) =0, xl(O) =-1.524 x 104- m, xl(T) =0,

xz(T)=?4;409><103'm. These initfa] and final conditions correspond to the cohr_
ditions for cases 5 and 6 in Schneider and Reddy (1974). Schneider and Reddy
presented the trajectory of case 6 which corresponds to our Figure 4, although
the ballistic coefficient for case 6 is about two times that of Figure 4.

Figure 3 is very close to case 5, although the ballistic coefficient for Fig-

ure 3 is 4.6923><104 Nm'2 which is slightly less than the coefficient for case 5,
namely 5.788 x 10* Nm™2.  The cost associated with Figure 3 (A= 3.542 x 108)
correspondingly slightly larger than the cost in case 5 (A=3.415x 108).

As the parameter € and the final time T increase, the equations (3.10)
become more sensitive to slight changes in the initial values of the adjoint
variables. This is partly due to the increased nonlinearity of the problem,
but the main troubie comes from the forward integration of the adjoint equations.
The adjoint equations are unstable in the forward direction and the differential
equations (3.10) will become infinite in a finite amount of time. One solution
to the problem which still maintains the shooting method is to use double pre-
cision instead of single precision accuracy in computations. Alternatively,
one can use one of the function space methods such as quasilinearization as
presented in Roberts and Shipman (1968a, 1972) or the back-and-forth shooting
method of Orava and Lautala (1976, 1977).

is
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CHAPTER 4
SPT APPROXIMATION OF OPTIMAL CONTROL LAWS

4.1 Introduct1on _ .

For the purposes of on-board contro] of an aircraft we are not interested
SO0 much in obta1n1ng opt1ma1 control tra3ector1es as in obtaining opt1ma1 control
laws. The essent1a1 difference between these two ways of specifying cdntro] is
that the opt1ma1 control trajectory specifies the control to use as a funct10n
of time while .the optimal.control law specifies the control to use as a function
of state. In principle, the control law is more valuable because it can provide

feedback correction to perturbations in the optimal trajectory caused by uncer-
tain environmental factors, e.g., wind gusts, or by errors in the mathematical
model of the system, e.g., modeling the aircraft as a point mass rather than
as a rigid body. Computationally, however, control trajectories are much easier
to compute than optimal control laws because one need only calculate a function
of one time variable rather than a function of several state variables. Indeed,
even if we could calculate the optimal control law exactly off-line, the storage
requirements would prohibit us from using this as an on-board control for any
but the most modest sized problems. Suppose n is the number of states for the
system, m is thefhumber of ‘controls, and N is the number of discrete values we
divide any one o? the n state variables into for storage. Then to store the
control law requires storing an n-dimensional array with nxN" e1ements. In our
problem we have n=6 and m=3. Even if we were willing to accept the crude
approximation of the control law resulting from using only N=10 discrete values
for each of the n=6 state variables, we would still have to store a 6-dimensional
array with 30x 106 elements. Thus, the well-known "curse of dimensionality"
forces us to use approximations for both the computation and the implementation
of optimal control laws.

In this chapter we present some general methods for approximating optimal
control laws by means of singular perturbation theory (SPT) techniques. In
the next chapter we apply these general methods to the minimum time control of
the six-state aircraft model described in Chapter 2. A brief summary of the
contents of the present chapter follows.
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Section 4.2 describes the basic calculation of the SPT approximation to
the optimal control law for a general dynamic system. To clarify this cal-
culation we discuss in detail the case of two time scales. The general case of
several time scales is discussed more briefly--we present the results and leave
the details of the derivation to an appendix. Section 4.3 discusses the compu-
tational difficulties of the SPT calculation described in Section 4.2 and it
also discusses alternative strategies for overcoming these difficulties in order
to obtain efficient real-time algorithms. In particular, we discuss in detail
the use of jndividuaT time scales for each individual state variable, Tineari-
iation of the SPT calculation outside of regions of rapid variation and the use
of suboptimal solutions for the slow time scales. Finally, Section 4.4 discusses
the problem of the validity of the SPT approximation in various regions of state
space. For example, by properly scaling the aircraft equations we obtain a
natural singular perturbation parameter that is inversely proportional to total
range in the interception problem. In this case, the SPT approximation is better
the farther the state is from the terminal target states. Near the terminal
target the SPT approximation breaks down dramatically and implementation of the
SPT control law leads to a destabilizing feedback law. Thus, in the vicinity
of the target state one must switch from SPT to some other method of approxima-
ting the control Taw.

4.2 Calculation of the SPT Approximation
4.2.1 Control Trajectories, Control Laws and the SPT Approximation

In Section 4.2 we will discuss the SPT approximation of optimal control
laws of the following generic, autornomous control problem. Let x represent an
n-dimensional state vector trajectory and let u represent an m-dimensional
control vector trajectory. The dynamic equations for the system are:

(2.1) d—ié = £(x,u)

Suppose that u is a given controi input trajectory and let x be the corresponding
state trajectory obtained from solving the differential equation (2.1) over the
time interval [to,w) with the initial condition
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_ te
A
{2.3) J(u) —f L(x,u) dt.
_ to
where te represents the final time at which we require the state to 1ie in the _
terminal target set. For simplicity we assume that the terminal target set con-
sists of the single state w so that the terminal condition for the problem is

{2.4) X(tf) =

In this generic control problem we will allow the terminal time te to be either
free or fixed and we will specify which is the case unless the results are the
same for either case.

The optimal control problem is to find a control input u* such that (2.3)
is minimized by u=u* subject to the condition that (2.1), (2.2) and (2.4) also
hold. For a given fixed terminal time tr and a given fixed terminal condition
(2.4), the optimal input u* is a function of the initial condition £, the ini-
tial time t0 and the current time t where tOS'tS te. That is, we have

(2.5) u* = u(t,ty,£)

By fixing the initial time tO and the initial state &, we can consider the op-
timal control in (2.5) as a function of the current time t only, i.e., as a
control trajectory. On the other hand, if we let the initial time to and the
initial state £ vary and if we set t= to, then we can consider the optimal
control in (2.5) as a function of time and state only, i.e., as a control law.
Here we are interested in obtaining an SPT approximation of the control law
and we will do this as follows. Using the SPT methods of trajectory optimiza-
tion, we will approximate the optimal control function in (2.5) for arbitrary
“initial times and initial states. We will then set t= tO in (2.5) to obtain
the optimal control u* to use at time t0 with the corresponding state £. Since
to and £ were arbitrary, this procedure will give us an approximate control
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law to use at any time for any state for which the SPT anproximation is valid.
In Section 4.4 we will see that the SPT approximation is not valid for certain
values of &. '

Suppose that the control problem in (2.1) - (2.4) has only two time scales,
fast and slow, and suppose that x= (xl,xz) where x1 represents the fast com-
ponents of x and x2 represents the slow components of x. Then the singular
perturbation approximation to (2.1) is

1
(2.6) 3= fl(xu)

dx2

(2.7) ef - £

XoU)

where e is a parameter varying from 0 to 1 and fi is the component of f corres-
ponding to the X' component of x, i=1,2. For each € the optimal control
problem with (2.6),(2.7), (2.3),(2.4) results in a TPBVP similar to the unper-
turbed (e=1) problem. In terms of the Hamiltonian H defined

(2.8) H{x,A,u) = L(x,u) + ATf(x,u)

where A = (xl,xz), we have the perturbed equations

di oH
(2'9) =L = . =2
dt ax !

2
d) oH
(2.100 9. _ 3
dt 3X2

which correspond to (2.6) and (2.7). The SPT approximation of the control tra-
jectory results from approximating the TPBVP given by (2.6), (2.7), (2.9) and
(2.10). Typically, this approximation has three parts: (1) an initial boundary
layer at the initial time to, (2) a reduced order, or outer, solution for t such
that t0<'t<'tf, and (3) a terminal boundary layer at the terminal time te. |
These different parts are determined as follows. The initial boundary layer is
given by solving
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(2.11) - 0

(2.12) 9% = £2(3,0)

o1
(2.13) %%— =0

22
(2.14) % = - Al:l"z()(s>\9"-])

t-t
The initial conditions for

where T is the fast time scale given by 7=
this TPBVP are the same as the initial conditions (2.2) for the unperturbed
(e=1) problem. That is,

(2.15) (o) = &l

(2.16) 0) = ¢

The terminal conditions are not those for the original problem, however. Instead
we have the asymptotic terminal conditions

(2.17)  1im X'(1) = %'(0)
(2.18)  1ip X°(1) = x}(0)

(2.19)  lim 3oy = xlo)

(2.20) iy (1) = 3%(0)

1 1

where X, Rz, A, Xz are the states and adjoints for the reduced order solution.

That is, X1, %2, %I, %2 satisfy the TPBVP
dxl 1o -

(2.21) at—= f (X,U)

(2.22) 0 = f2(%,0)
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(2.23) a+ - - _'1()_(,19[_‘)
(2.24) 0= - ¥ (,%,1)

The initial condition is

_1 _
(2.25) x“(0) = ¢
and the final condition is given by
(2.26)  xl(tg) = w!

Note that the reduced order solution treats 22 as a pseudocontrol which satisfies
the algebraic equation (2.22) rather than the original differential equation.
Finally, the terminal boundary layer is given by solving

(2.27) 33‘,—1 =0
(2.28) %E = f2(%,0)
(2.29) it _
do
(2.30) géf-= - ggz(x,i,a)

where ¢ is-the fast time scale o= = The initial conditions for this TPBVP
are the same as the final conditions (2.4) of the original problem. That is,

1

(2.31) X*(0) = w

(2.32)  %2(0) = w?

The terminal conditions are given asymptotically in terms of the reduced order
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solution as

(2.33)  1jm %'(0) = x}(t;)
(2.38)  1im, %%(0) = %4(ty)
(2.35)  Lim_ X'(0) = T(ty)

(2.36)  Lim, X2(0) = X2(ty)

e
tory (1), the r

J
the terminal boundary Tlayer {i(c). The SPT approximation which is uniformly
valid over the whole interval tOS'ts tf is given by

(2.37)  u*(t,ty,8) = [G(7) -U(0)] + [T(o) - u(te)]

t-t t-t

where T = 0 and o= Note that we have suppressed the dependence of i,

uand U on t0 and £ for clarity. Here we have only sketched the SPT method of
approximating solution trajectories of the TPBVP one obtains for an optimal
control problem. In Subsection 4.2.2 we will present this approximation in
more detail for the problem of obtaining control law approximations. The
reader should refer to Kelley (1973) for more details about obtaining optimal
trajectory approximations by means of SPT.

Because we only wish to obtain the approximation of the time function
t-*u*(t,to,g) at the initial time t= to, we only need to obtain the initial
boundary layer terms in the SPT approximation. However, to obtain this term we
need to calculate the reduced order approximation first. Nevertheless, we do
not need to consider the terminal boundary layer at all to obtain the lowest
order approximation. To obtain the higher order terms of the initial boundary
layer we would have to calculate higher order terms of both the reduced order
approximation and the terminal boundary layer approximation. The following
discussion will help clarify this situation.

Equation (2.37) represents the first term in an asymptotic approximation
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for thé optima] control trajectory u* as a power series in €. The full asymp-
totic series has the form

(2.38)  wrs LI (0) - Bltg)] + G() + [lo) - Gyt T)e"
Where uk dendtes the ktb order term of the initial boundary layer approximation,
uk ‘denotes the k order term of the reduced order solution and uk denotes the kt
order term of the terminal boundary layer approximation. Note that we have
suppressed the & dependence of the functions Gk, Ek, ﬁk in order to maintain
notatfonal clarity.

The boundary layer terms Gk and ﬁk in (2.38) must have the following
asymptotic properties:

h

(2.39)  lim 8, (1) = G (t,)

(2.40) Jjﬂ;ﬁk(c) = Ek(tf)
Moreover, for reasonably well-behaved problems the convergence in (2.39) and
(2.40) will be exponential. That is, for some positive constants ak,bk we will

have

-a, T
e k

A

(2.41) | (o) - Gty

-b, ||
o K

A

for sufficiently large t and |o|. Using the information (2.42) and evaluating
(2.38) at t= to, we obtain

w ((teto)/
(2.43)  u* Zo 0 (0" + o( £t E)sk}

where, as usual, the order notation 0(¢(e)) denotes a function which decreases
as fast as ¢(e) as €~0. The SPT approximation in (2.38) is only an asymptotic
approximation as ¢~>0. Moreover, in (2.43) the exponential terms
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'bk(tf‘to)/(': k ~ k
O<§ e decrease exponentially faster than the terms uk(O)e . Thus,
the exponential terms are negligible in the asymptotic expansion, and we have .

(2.48) u*= Y G.(0)eX
k=0 K

th

From (2.44) we see that in order to obtain the k= order approximation for u*

we need only find the kt—:h order initial boundary layer approximation

(2.45) ) uj(O)eJ
J=0

However, note that to obtain the term ﬁo in (2.45) we need to calculate the
reduced order term GO first. To obtain the gﬁxt term ﬁl we must calculate UO

and Gl as well. In general, to obtain the k= order initial boundary layer
approximation we have to calculate the reduced order approximation up to the

k—b order and the terminal boundary layer approximation up to the (k—l)-— order
The important point to note is that to find the OEb order SPT approximation, the
one which we will be using to approximate the aircraft control Taw in the succeed-
ing chapters, requires only the calculation of the initial boundary layer and

the reduced order approximation of the 0th order--the terminal boundary layer
approximation does not enter the calculation at all.

The expression (2.43) indicates when the SPT approximation breaks down;
namely, when the initial time to and the final time tf are very close together
so that (to-tf)/e is small and the exponential terminal boundary layer terms in
(2.43) cannot be neglected. In this case, the SPT approximation of u* in terms
of initial boundary layer, reduced order and terminal boundary layer approxi-
mations is invalid and the asymptotic approximation in (2.38) is incorrect. In
particular, one cannot improve (2.44) by including the terminal boundary layer
terms in (2.38). We discuss this situation further and illustrate it with
simple examples in Section 4.4. 1In the next subsection we discuss the details

of the calculation of the k=0 term of (2.44) for the two time scale case.

4.2.2 Calculation of the SPT Approximation: Two Time Case

Although the aircraft example considered in this project is treated as”a
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system with more than two time scales, the notational difficulties of presenting
the multi-time scale case obscure the basiC'sjmplicity of the SPT calculation
of the approximate optimal control. Therefore, to illustrate the basic method
we will discuss the case of a two time scale dynamical system in some detail in
this subsection. In the next subsection, 4.2.3, we will present and discuss the -
results for the multi-time case, but we leave the details of the calculation to
Appendix 4.1 at the end of Chapter 4.

Consider the dynamic system

(2.46)  §t = f(x.y0)

(2.47) sg% = g(x,y,u)

where xe X, yeY and ue U. We assume that X, Y, U are vector spaces which are
not necessarily one-dimensional. The cost criterion for the control problem is

t
(2.48)  J(u) éffn_(x,y,u) dt
0

where tf is a terminal time which may be either fixed or free. The terminal
conditions for the problem are

(2.49) x(tf) = Xg¢

(2.50)  y(tg) = vg

and the initial conditions for the problem are

(2.51) x(0)
(2.52)  y(0)

g

n

To find the first term of the asymptotic series (2.44) we need to obtain
the initial boundary layer approximation, but as we indicated in the previous
section, we must first calculate the reduced order approximation. The reduced
order approximation to the system (2.46) - (2.52) is obtained by setting the
perturbation parameter €=0 in (2.47) and omitting the initial condition (2.50)
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and the terminal condition (2.52). If the quantities X, V¥, U denote the reduced
order approximation, then we obtain these quantities by solving the problem with
the dynamic system

(2.53) = F(X,¥,U)

oo,
oI

where vy and U are both considered as controls for the state X. In addition, we
require that the following equality constraint be satisfied: .

(2.54) 0 = g(X,¥,u)

The cost criterion for the reduced order problem is the same as for the original
problem (2.48), namely '

(2.55) J(

<
-
(=]
e
n
ot
—h
—
—_
x|
hd
<l
v
<
S
o
f+

In the reduced order problem only the initial and terminal conditions for x are
retained. Thus, we have the initial condition

(2.56) "X(0) =
and the terminal condition

(2.57) i(tf) = Xg

To solve the reduced order problem we define the reduced order Hamiltonian

(2.58) ﬁ(i,y,ﬁ,ix) = L(X,y,u) + Xxf(i,y,i)

in which Xx denotes a reduced order adjoint variable for the state X. The
minimum principle implies that the optimal controls y* and u* are chosen so that
on the optimal trajectory we have

(2.59)  H(R(1),5*(),T*(t),X,(t)) = min H(Z(£),5,T.X ()
Y»u

Provided that we can solve the minimization problem in (2.27) for the controls
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y* and u* in terms of X and A » we have the fo]]ow1ng two- -point boundary va]ue
problem (TPBVP) for the X and A trajectories:

(2.60) G = FRIHBX,)INEL,))
di ) o
(2.60) gt = - f (RIHRA)TRAR)

The boundary conditions for this TPBVP are the initial and terminal conditions
on X given in (2.56) and (2.57). If the terminal time te is free, then there
is an additional condition on the Hamiltonian, namely,

(2.62)  H(X(t),¥(t),U(t),1(t)) = 0

for all times t such that O<tst,.

In order to obtain the initial boundary layer we need to have the optimal
reduced order adjoint X; and the optimal reduced order pseudocontrol y* at the
initial time t=0. Assuming that the terminal state (2.57) is fixed and that
the initial condition (2.56) is variable, then the adjoint X; and the pseudo-
control y* at the initial time t=0 depend on the initial state & and the final
time te as follows:

(2.63) X% = Ax(&,ty)

(2.64)  §* = F*(E,ty)
If the final time is free, then the adjoint and control at the initial time t=0
depend only on the initial state £. Having obtained (2.63) and (2.64), we can
now formulate the initial boundary layer problem.

The initial boundary layer problem is obtained from (2.46) and (2.47) by
transforming these equations to the fast time scale t=t/e. Thus, we have

(2.65) g§.= ef(X.9,0)
(2.66) L= g(.5,0)
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where %, ¥, U denote the initial boundary layer approximation to the quantities

X, y and. u. Note that in this approximation both X and § are states and U is

the only control. Since we are only interested in the 0Eb order approximation,

we set =0 in (2.65) to obtain

(2.67) %§-= 0

(2.68) L= g(%,5,0)

Thus, the state X is constant given by the initial condition (2.51),
(2.69) X(t) =&

for all 120. Likewise, the adjoint ix corresponding to X is constant and is
given by

(2.70) X (1) = X, (Est)
for all t=0. Using (2.69) and (2.70), we may rewrite the initial boundary

layer problem as an infinite horizon control problem for § and G alone. The
dynamic system for this control problem is

A

dy _ ~ o~
(2.71)  gF = 9(£,5,0)
with the initial condition

(2.72) y(0) = n

which is derived from (2.52). The terminal condition for the problem is given
as an asymptotic limit, namely

(2.73)  lim §5(v) = 9(E:tp)

This asymptotic terminal condition is the requirement that the initial boundary
layer match up with the reduced order approximation. The infinite horizon cost
criterion for the initial boundary layer problem is given in terms of the cost
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funétion L and the réduced order adjoint-ix as
2.78) 30 = [T IS + 3 (6t (e8] b
| 0 / / \ : .

The dptima] control trajectory U* for the initial boundary layer problem depends
directly on the initial condition (2.72) and the fast time 1, and indirectly on
the initial condition £ and the final time tf for the reduced order problem.
Thus, T o ‘

(2.75) i* = ﬁ*(T’nagstf)

As we saw in (2.44), we only need (2.75) at T=0 for the SPT approximate optimal
control Taw. Thus, the approximate optimal feedback control law u* is

(2.76)  u* = U*(0,n,&,t)

The approximation (2.76) expresses the control u* as a feedback function of the

current state (£,n) and the time-to-go te.

In terms of the preceding discussion the calculation of the SPT approximate
optimal control law can be summarized as follows (also see Figure 4,2.1): for
a given state (£,n) and time-to-to te
(i) calculate the optimal control adjoint and the pseudocontrol law for the

reduced order problem in (2.53) through (2.57). Note that the adjoint

and the pseudocontrol for. the reduced order problem will depend on the

current x state & and the time-to-go te.

(i1) Using the adjoint and pseudocontrol from the reduced order approximation
to define the cost and the asymptotic terminal condition for the initial
boundary layer problem, calculate the optimal control Taw for the initial
boundary layer problem (2.71) through (2.74). Note that this solution
will depend on the current y state n directly, and indirectly on the
current x state £ and time-to-go te. The current x state and the time-to-
go enter the initial boundary layer problem only in the asymptotic terminal
condition (2.73) and the cost functional (2.74).

Before turning to the general multi-time scale case, let us note that without

further assumptions the SPT approximation is no easier to solve than the
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Read in current state (£,n)
and time-to-go tf

Solve the reduced order control prdb]em
dx _ ¢rz o =
EE f(x,y,u)
0 = g{X,y,u)
%(0) = £, %(tg) = xg

t
- f
3(3,0) = J@ L(%,7,1) dt

adjoint A*(,t¢) and
pseudocontrol y*(g,tf)

Solve the initial boundary layer control problem

& - g(&,5.0)
§(0) = n, §(=) = F*(E, tg)

3() =.j; {L(,5,0) + XA(E,t)F(E,9,0)} dr

control ﬁ*(O,g,n,tf)

N
Approximate SPT optimal control law
u* = ﬁ*(O,E,n.tf)

Figure 4.2.1.-General SPT Algorithm: Two Time Scales.
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original control problem in (2.46) through (2.52). Although the reduced order
problem in X is a smaller dimensional problem than the original problem in x and
¥, the initial boundary layer problem in y could be as difficult to solve as |
the original problem due to the general cost functional (2.74) and the general
terminal condition (2.73) which depend on the current x state £. We will discuss
this point in more detail in Section 4.3.

4.2.3 Calculation of the SPT Approximation: Multi-Time Case
The calculation of the SPT approximation to the optimal control law in the

multi-time case is conceptually the same as in the two-time case. Therefore,
we will present only the basic algorithm for the calculation in this section
and Teave the details of the formulation and calculation to Appendix 4.1 at the
end of Chapter 4. Consider the generic, autonomous control system introduced
in Subsection 4.2.1 in equations (2.1) through (2.4). Let us suppose that the
state vector x has been decomposed into Tower dimensional components x| of
dimension ni.for'i=0,1,...,r. If x has dimension n, then O<r<n-1 and for
each i we must have 1er <n. Each component corresponds to a separate time

scale with Xg representing the slowest time scale and x,. representing the fastest

time scale. The time scales are arranged in order so t;at for each i the time
scale for Xi4+1 is faster than the time scale for X We now present the al-
gorithm for calculating the SPT approximation to the optimal control in this
case of r time scales. The reader may refer to Appendix 4.1 for details of the
singular perturbation theory formulation and derivation.

To facilitate our presentation we introduce the following notation. A )
superscript i will always refer to a vector component corresponding to the X!
components of the x vector. Thus, we write f' for the components of the vector
function f in (2.1). On the other hand, the subscript i will refer to quantities
corresponding to the itb boundary layer problem. Thus, we define the pseudo-
control u; as

(2.77)  uw. = (X7, x L)

for i=0,1,...,r-1 and

(2.78) u, = u.
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Similarly, we define E; corresponding to the first i+l initial conditiens,

(2.79) E; = (£9,...,eY

“for i=0,1,...,r.
The vector functions 9; of (x,u) are defined so that

(2.80)  g;(xou) = (FH(xou),0nl s (x00))

for i=0,1,...,r-1 and so that

(2.81)  g(x,u) =0

The function Ips1 which is trivially 0, is used only for notational cpnvenience.

The control to use with current state £ and time-to-go t. is calculated as
follows:
(i) Solve the reduced order problem:

0
dx” _ 0,0

(2.83) 0 = go(xo,uo)

(2.86)  x%(0) = £°

(2.85)  x%(tg) = o

where w is the terminal condition (2.4) for the original problem,
(2.86)  Jn(uy) = f L(x0,u.) dt
: o‘Y X"sly
0

where L is the cost criterion (2.3) in the original problem. |
(ii) Let 21 denote the first component of the pseudocontrol Ugs and let X6=

*Also see Figure 4.2.2.
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Read in current state ¢
and time-to-go tf

N

Solve reduced order control problem

0
dx” _ 0, 0
d - f(x ,uo)

0 = go(x’,up)

x0(0) = £, x0(te) = "

t
e N
Jo(uo) .1; Lo(x ,uo) dt

i=1 | Xy p

i = inje it

1

dxi _ iy i
d = T gLy

0 = g.i(E.i_15X1’ui)
x10) = &f, xi(=) = &

_ o el
by = Lo * Aaf

_ i
‘J-i(u-i) - .I’O Li(gi-l’x ,u.i) dt

Solve itb initial boundary layer control problem

Approximate SPT optimal control

ko
u Ur

Figure 4.2.2.-General SPT Algorithm: Multi-Time Scales.



0

denote the adjoint variable of x” in the reduced order problem. Note that

%! and Xo-have the following functional dependence:
i N

(2.87) X" =X (gostf)

(2.88) Xy = Xg(Egate)

Let L0 denote the cost criterion L in (2.86). Set i=1 and go to the next step.

(iii) Solve the itb initial boundary layer problem:

i .
el
T

[~

Jax_
dt

—~
N
.
[0]
(*]

~

I x.iu-\
\oj 12X »Uy)

- i
(2-90) 0= gi(Ei_l,X 9u1)

i

—
N
O
—

~
x

—4o

Py
(=]

~

n
Y

(2.92)  x'(=) = X' (g;_;»te)
(2.93)  3.(u;) =f0 Li(EspoX ;) d

where the cost criterion Li for the itb initial boundary layer problem is defined
recursively in terms of L, , as

1

1

(2.98)  Li(Eq_1ox suy) =Ly 1(8g_peE ' ax'ouy) + X, M8t £ (e, x huy)

(iv) If i<r, denote the first component of the pseudocontrol us ca]cg]ated

in step (iii) by i1+1 and let Xi denote the adjoint corresponding to x| in the

itb boundary layer problem. Update i by 1 and return to the beginning of
step (iii).
Stop if i=r; u= u, gives the SPT approximate optimal feedback control for
the current state £ with time-to-go t.. ,
The procedure for calculating the Otb order SPT approximation of the optimal

control law consists of solving a hierarchy of lower dimensional optimal control
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problems. At the i=0 level of the hierarchy, which corresponds to the slowest
component of the state variable, we must solve the reduced order control problem.
This 1is an g dimensional problem with finite terminal time, which may be free
or fixed. At the subsequent levels for i>0, which correspond to faster com-
ponents of the state variable, we must solve the itb initial boundary layer
control problem. This is an n; dimensional problem with infinite terminal time,
i.e., it is an infinite horizon control problem.

At each level i>0 of the hierarchy the cost criterion and the asymptotic
terminal condition for the control problem is defined recursively from the pre-
vious level by the relation (2.94). Thus, the cost control problem at the itb‘
level of the hierarchy depends on the components EJ, for 0<j<i of the current
state E.

Once the final level of the hierarchy is reached, the SPT approximation to
the optimal- control for the current state £ and the time-to-go tf is the optimal

control u= U, one obtains from this level.

4.3 Computational Aspects of the SPT Approximation
4.3.1 Computational Difficulties of SPT Approximation
In Subsection 4.2.3 we decomposed the original optimal control problem

(2.1) - (2.4) of state dimension n into r+1 subproblems of dimension n; for the
itb subproblem, i=0,1,...,r. Since we will have n;<n for each i, the itb
subproblem should be computationally easier to solve than the original n dim-

ensional problem. However, the r+l1 subproblems are coupled in such a way that

the itb problem requires results from the (1'-1)tb problem to define the cost

and terminal condition in the itb level problem. If we define the integers Ni

as the sums
(3.1) N, = j& n.
i =0 J

then the control subproblem at level i depends on Ni+1 parameters (or Ni para-
meters if the terminal time for the original proplem is free). These para-
meters consist of the current state components EJ for 0<j<1i and the time-to-

go tf. At the rtb level, the final level, the control subproblem depends on
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Nr+'1= n+1 parameters--namely, the entire current state & and the time-to-go

te. Thus, the final Tevel of the control subproblem depends on as many parameters
as the original problem and may be as difficult to solve. Moreover, it is es-
sential to compute this final subproblem in order to obtain a realistic feed-'
back control for the original control problem. For if we stop the computatidn
process at a level i::r, then we implicitly will be assuming that we can directly
control the states x9 for j>1i. In practice this means that the u-controls
resulting from the it? Tevel will not provide feedback correction for these
higher level states xJ for j>1i.

Thus, the SPT approximation presents us with a dilemma. To obtain a feed-
back control law that will correct deviations from optimal of all state com-
ponents we need to compute the final level of all the subproblems up to and in-
cluding the final level. But to obtain a computational advantage over solving
the original problem exactly (without SPT) by using the SPT approximation we
need to stop our computation at some level before the final Tevel. In the fol-
Towing three subsections we discuss three different strategies for making the
SPT algorithm computationally efficient.

4.3.2 Complete Time Scale Separation

One possibility for making the SPT algorithm more efficient is to subdivide
the original problem into a large number of small dimensional subproblems and
to develop fast algorithms for solving these small dimensional optimal control
problems with general cost criteria and general terminal conditions. The
extreme case of this procedure is to choose r=n-1 so that ny = 1 for each
i=0,1,...,r. This is the approach Calise (1977, 1978) has taken in construc-
ting feedback controls for aircraft by means of singular perturbation theory
methods. Making each subproblem one-dimensional allows one to substitute a
sequence of static optimization problems for the original dynamic optimization
problem. The drawback of this procedure is that the assumption that each one-
dimensional component of the state operates on its own time scale will be un-
realistic when some components of the state are closely coupled together.

The transformation of the dynamic control problem to a static optimization
problem is based on the following simple observation. Suppose that we have a
dynamical system with a one-dimensiona] state variable x and dynamic equation
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given-by
' dx _
and ¢ost criterion given by -
(3.3) J(u) i]’ L(x,u) dt
0
The minimum principle asserts that the optimal adjoint variable A; for a given

state x is chosen so that we have

(3.4) ¢ = min {L(x,u)*-k;f(x,u)}
u

where ¢ is a constant not depending on x. From (3.4) we see that if u is a

_______ e aln

control such that f(x,u) >0 then '
c-L{x,u
. < A¥
(3.5) U X

and if u is a control such that f(x,u) <0 then

C'LX,U .
(3.6) .U 2 A;

Defining m(x) and M(x) so that for each x we have

u }

we obtain the following upper and lower bounds on the adjoint A;:

(3.9) m(x) < A} s M(x)

If the optimal control u* for the given state x is such that f(x,u*)=0,
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then the adjoint A% must be equal to either its upper or Tower bound in (3.9)
and the optimal control u* is found by solving the corresponding minimization
(3.8) or maximization (3.7). However, for some states x it may be optimal to
choose u* such that f(x,u*)=0, and in that case the minimum principlée (3.4) J
gives no information on the adjoint variable A;. Neverthe]ess, the cond1t10n_
that the state x tends asymptotically to a terminal state w implies that
f(x,u*) =0 for optimal u* if and only if x=w. Note that such an asymptotic
terminal condition is assumed for each initial boundary layer problem in the
SPT approximation. Note also that without assuming such an asymptotic terminal
condition it may be possible to achieve a lower cost (3.3) with a state trajec--
tory which does not tend to any limit, e.g., a periodic trajectory.

Therefore, let us add to the control problem (3.2) and (3.3) the asymptot1c
terminal cond1t1on ‘

(3.10) . lim x(1) = w

Then if u*(x) denotes the optimal feedback control for sfate X, we have
f(x,u*{x)) =0 if and only if x=w. In this case, u*(x) is found from solving
the static prdblem (3.7) when x<w and from solving the static problem (3.8)
when x > w. The corresponding optimal adjoint is equal to m(x) if x<w and is
equal to M(x) if x>w. This procedure for determining the optimal u and Ay in
terms of x is illustrated in Figure 4.3.1.

To see how the preceding considerations apply to the multi-time scale
control problem such as we have illustrated in Figure 4.2.2, let us assume that
each of the initial boundary layer control problems in Figure 4.2.2 is one- |
dimensional, i.e., assume that n; =1 for each i=1,2,...,r. Then the initial
boundary layer nroblems can be solved as a sequence of static optimization prob-
lems as illustrated in Figure 4.3.2. In Appendix 4.2 of this chapter we show
that this static optimization prob]em has a solution under very genera] conditions.

Although we avoid having to solve any TPBVP's or dynamic trajectory optimi-
zation problems fo~ the initial boundary layer problems, the complete separa-
tion of time scales in the boundary layer problems may result in a static op-
timization problem which is no less difficult to solve than the correspondingf
dynamic opt1m1zat1on problem. In particular, note that as before the cost
criterion and the terminal condition at each level depend on the computat1ons of
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Figure 4.3.1.-Feedback Control Algorithm for One-Dimensional State.
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the previous level. Thus, the cost criterion and the terminal condition as
functions of Ei become more and more complex as i increases. In the highest
level, i=r, we will have a complex nonlinear programming problem whose cri-
terion function Lr depends on &, the current state, and cannot be determined
until the previous r-1 initial boundary layer problems have been solved.

4.3.3 Suboptimal Approximation of the Reduced Order Solution

A second possibility for increasing the efficiency of the SPT algorithm
is the use of suboptimal approximations for the reduced order solution. As
shown in Figure 4.2.2, the reduced order control problem is the first step in
the SPT algorithm for approximating the optimal control law. By -approximating
the solution of the reduced order problem, we may be able to solve a reasonably
large dimensional reduced order problem in an efficient manner and leave a small
dimensional initial boundary layer problem to solve in the next step of the SPT
algorithm. In this way, we may reduce the computation time for the whole al-
gorithm and at the same time, because we can consider a larger dimensional
reduced order problem rather than an artificially small dimensional reduced
order problem, we may also improve the accuracy of the SPT approximation.

For simplicity let us only consider the suboptimal approximation of the
reduced order solution in the case of two time scales as in Subsection 4.2.2.
There is no difficulty in applying the same procedure to the multi-time scale
case. In order to go from the reduced order control problem to the initial
boundary layer problem (see Figure 4.2.1), it is necessary to have the adjoint
X; of the reduced order state variable x. Not only does this adjoint define the
cost criterion for the initial boundary layer problem, it also determines the
asymptotic terminal condition y* of the initial boundary layer problem as a
solution of the minimization:

(3.11)  min {L(&,F,0) + KAF(£,7,0):  9(£,7,0) = 03

Unfortunately, we may not have the adjoint X; immediately available. For ex-
ample, we might be given a suboptimal feedback control ﬁs(i) and ys(i) derived
from heuristic considerations or from previous experience and have no corres-
ponding adjoint. Moreover, if the reduced order control law is not optimal,

it is not clear what the adjoint of the suboptimal reduced order state should be.
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To resolve these difficulties we must consider the behavior of the initial
boundary layer solution. As we noted previously, this problem is an infinite -
horizon control problem with the infinite time cost criterion defined in (2.74).
Assuming that the boundary layer state § has an asymptotic 1imit as in (2.73),
then it is not hard to see that this 1imit must be the first component y* of ‘1
the solution of the minimization problem in (3.11). That is, y* is the optimum
steady state control for the reduced order problem with cost (2.74). Thus, we
should choose the adjoint X; so that the solution of (3.11) gives a reasonable
suboptimal control for the reduced order control problem. B

For example, if we are given the suboptimal control as,ys for the reduced
order problem and we wish to find an adjoint which gives back this particular
suboptimal control, then we must find X; such that us,ys is the solution of -
(3.11). For example, if US and ys do not occur on a constraint boundary of y
or u, then we may determine the adjoint X; by solving the simultaneous Tinear
equations

of

(0.12) -a—y

Ny (g’yS’ES) + X;(

oL - - —. SF - -
(3-13) W (E"YS’US) + A; '5'u‘ (‘E’ys’us) + }\; U

&
—
]
-
<I

[72}
-
[=4]
7]
~

il

(@]

Note that unless the dimension of the x state is equal to the dimension of the
u control, there will not be the same number of equations as unknown adjoint
variables in (3.12) and (3.13). Thus, in general we must expect that the sim-
ul taneous equations in (3.12) and (3.13) will have either no solutions or in-
finitely many solutions. If the equations (3.12), (3.13) have no solution,
then we cannot obtain X; with this method and we must find some other way of
choosing an appropriate adjoint A; for the reduced ordéer control problem.
Instead of trying to find an adjoint X; which will yield a given reduced
order control ys,us as the solution of (3.11), let us find an adjoint which will
yield a better reduced order control than the control ys,as. It is clear that
such a method would be preferable to the first method described above, but it
js not clear how we gan find the desired adjoint. Fortunately, Beliman's (1954,
1957, 1961) technique of monotone approximation provides exactly the so]ution_we
are seeking. ' '

Since monotone approximation is an application of the ideas of dynamic
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programming, we start by briefly describing the role of dynamic programming in
optimal control. The reader should refer to.Bellman (1957) for details. Sup-
pose that we have an autonomous dynamic system

(3.14) gﬁ £(x,u)

with the cost criterion
T
(3.15) J(u) =j; L(x,u) dt + C(x(T))

and a fixed terminal time T. Let the state have the following initial condition
(3.16) .. x(0) =

Note that for mathematical convenience we have fixed the terminal time T and we
have omitted a terminal condition in favor of the terminal cost term C in the
cost criterion (3.15).

Let V*(&,T) denote the minimum possible cost (3.15) over all admissible
controls u. That is, let

(3.17) V*(£,T) = min J(u)
u

We can interpret V*(£,T) as the minimum cost-to-go from the state £ with time-
to-go T. The minimum cost-to-go V* satisfies the following functional equation:

min {L(&,u) + gg f(g,u)}

u

ov*
(3.18) ¥

n

with the boundary condition

(3.19)  Vx(£,0) = C(€)

If u*(g,T) is an optimal control to use at state £ with time-to-go T, then (3.18)
implies

BV

(3.20) —4- = L(g,u*(g,T)) + 3¢ f(E,u*(g,T))
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Monotone approximation uses the boundary condition (3.19) and the linear equa-
tion (3.20) in V* to find a cost-to-go function VS corresponding to a given
suboptimal control law u_. Thus, suppose that V_ satisfies

BVS BV
(3.21) 312 = L(Eug(ET)) + 5= F(5,ug(E,T)

with the boundary condition (3.19). Then if we generate a new suboptimal control
ug by minimizing the function ' '

BVS
(3'22) L(gau) + f—f(g’u)

with respect to u, the new cost associated with this new control law u w111 be

Tess than the cost for the control law Ug - By repeating this process one obta1ns

a sequence of cost-to-go functions which decrease monotonically to the optimal
cost-to-go V*,

To obtain an appropriate adjoint to use in the initial boundary layer prob-
lem, we only need to apply the monotone approximation method once. Thus, given

a suboptimal control law ug, we solve (3.21), (3.19) to obtain VS(E,T). The
adjoint corresponding to the current state £ with time-to-go T is then the partial

BVS

o&
the initial state or the cost-to-go from that state.
To summarize, the monotone approximate method for obtaining the reduced

derivative Thus, we choose as an adjoint the variation with respect to

order adjoint consists of the following steps:
(i) Solve the linear partial differential equation

(3.23) 4 = L(ET(ET)T(E,N) + 3 FET(E.T),T(E.T))

with an "appropriate" terminal condition of the form

(3.24)  V(g,0) = C(&)

If a terminal condition if is specified for the reduced order control problem
rather than a terminal cost C as above, then we may introduce a fictitious cost
such that C(X) =0 for 2==§f and C(X) =4», A finite cost in (3.24) would be more
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tractable mathematically and computationally, and perhaps more realistic than
a fixed terminal condition. After solving (3.23), (3.24), obtain the adjoint X;
from

(3.28) A& =&

(i1) Using the adjoint calculated in step (i), minimize the function
(3.26) L(g,y,u) + A, (€, T)F(E,y,U)

with respect to the reduced order controls u and y. The solution of this mini-
mization problem provides the necessary asymptotic terminal condition for the
initial boundary layer control problem.

To. implement this method for finding the reduced order adjoint, we must ob-
tain an efficient solution to the partial differential equation in (3.23).
Solving partial differential equations is never an easy task, and the computa-
tion of the adjoint Xx would most likely have to be done off-l1ine. Nevertheless,
note that for a given suboptimal control the solution of (3.23) will be much
easier than the solution of the nonlinear dynamic programming partial differential
equation (3.18) for the optimal cost-to-go. Moreover, a number of techniques
are available for solving and approximating the linear problem.

In Figure 4.3.3 we have illustrated the basic procedure of using a sub-
optimal reduced order controi. Note that in the multi-time scale case we may
use this suboptimal strategy at any level of the SPT algorithm. Thus, we may
compute a suboptimal solution of the 1tb initial boundary layer control problem
and use one of the above methods to compute an adjoint variable to use in de-

fining the cost criterion for the (1'+1)tb problem.

4.3.4 Linearization of the Boundary Layer Problems

A third possibility for increasing the efficiency of the SPT algorithm is
the linearization of the initial boundary Tayer control problem around the
nominal provided by the first component of the pseudocontrol of the reduced
order solution. Implicitly, this approximation assumes that the "fast" boun-
dary layer variables are approximately in equilibrium; that is, equation (2.54)
is approximately correct. As we have done in the previous two subsections, we
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will first discuss the two time scale case in detail and then brief]y discuss

the multi-time case. _
Consider the two time scale problem in Subsection 4.2.2 and let the current
x state be fixed at £. Let X;, y*, and U* be the corresponding pptiMal adjoint
Xx and pseudocontrols y, u to use for this value of the x state in the reduced
order control problem. We are going to linearize the boundary layer control
problem (2.71) - (2.74) around these optimal reduced order values. In the
following derivation let us denote quantities evaluated at the optimal reduced
order solution by a bar, e.qg., %gu Let Sy denote y - ¥* and let Su denote U - T*.

Expanding (2.71) to first order gives

v = 99 3g
(3.27) Sy 3y Sy + s Su

where the derivative with respect to T is denoted by a prime, i.e., ( )'==%L—L.

T
Let us define matrices A and B as

(3.28) A= %3 (£,5%,T%)

(3.29) B = —g{} (£,7*,0*)

Then (3.27) represents the time invariant linear system
(3.30) Sy' = ASy + BSu

To obtain the quadratic cost criterion for the linearized problem we first
define the Hamiltonian for the boundary layer problem, that is,

(3.31)  H($,0) = L(£,9,0) + X3f(£.5,0) + A g(£.9.0)

From Bryson and Ho (1975) we see that the cost criterion for the linearized
boundary layer problem is defined in terms of the following three matrices which
consist of the second order derivatives of this Hamiltonian.

o)
o

(3.32) Q

N
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|

[~
jm =

(3.33) R

Q|

<
Q
<

-~|

Q>
s

In the expressions (3.32) - (3.34) the bar denotes that the expréssion is evalua-
ted at the reduced order nominal value. Thus, for example, we have

: 9 H _ 3°L i - o f - = - 3 - -
(3-35) 7 2 (E,.YsU) '_"}\x'—-"z (an.su) + Ay ayg (Esyau)
Evidently, we need to calculate the Lagrange multiplier iy in the reduced order

problem if we are going to linearize. For example, we can accomplish this by
solving the linear equations

oL , 7 of , T ag .
(3.36) 55+ A, vt hyey -0

oL , v of . = 3g .
(3.37) ETIR T J\y 3y 0

Note that some of these equations will be redundant for the purpose of obtaining
Xy.

Using the expressions (3.32) - (3.34), we can write the cost criterion for
the Tinearized problem as

T

(3.38) fo L[5y Qay + 28y  Rsu + su' S su] dr

Hence, the linearized approximation of the boundary layer control problem gives
a time invariant, linear quadratic regulator problem. The feedback control is
simply calculated by solving a system of quadratic equations (the so-called al-
gebraic Riccati éduation) to obtain a constant gain matrix G. For this problem
G is obtained by solving the following equations for G and K simultaneously:

(3.39) G = -[s"L(ks+R)]T
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T

(3.40) Q+ 2RG+ G'SG+ KA+ KBG =0

The optimal control law for &u in terms afléy is then
(3.41) Su = G8y

To surmarize, the procedure for finding the linearized boundary layer control is

to compute the matrices A, B, Q, R, S from (3.28), (3.29), (3.32), (3.33), (3.34)
for the current value of the reduced order state, and then to solve the equations
(3.39), (3.40) to obtain the gain G which gives the boundary layer control law

in (3.41). -

In the multi-time scale case we may5carry out the linearization at any
level of the SPT algorithm. Thus, it may be appropriate in some cases to lin-
earize the control problem for the itb control subproblem around the nominal
values proved by the (i—l)tb control subproblem. Other variation% are also
possible. For example, we may decide to linearize the boundary layer problem
described above around y* only and maintain the nonlinear dependence of the boun-
dary layer problem on the control u. In any case, the decision whether or not
to linearize is determined by the "error" between the actual value of a variable
on the it Tevel of the SPT algorithm and its "optimal" value on the (i-1)"
level. By monitoring this error an algorithm can decide when to switch from a
more accurate and also more difficult nonlinear control to a more efficient
linear approximation. One such algorithm is illustrated in Figure 4.3.4.

Before concluding this section, let us note some of the advantages and dis-
advantages of the linearization procedure described in this subsettion. The
major disadvantage is that we are using a linear model for a nonlinear system.

In particular, this approximation will be valid only when the boundary layer
states are sufficiently close to their "optimal" values calculated in the re-
duced order solution. The major advantages of Tinearization are ‘that (1) the
Tinear control is easier to compute than a nonlinear control, and (2) because

the linear control is easier to compute, we may treat a larger dimensional boun-
dary layer control problem than otherwise: thus, we may avoid having to intro-
duce multiple time scales artificially in order to obtain a tractable computation.
Note that once a linear problem is obtained it is possible to apply the General-
ized Multiple Time Scales method (GMS) of Ramnath and Sandri (1969) to improve
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the efficiency of computation. The time scales for the Tinearized problem are
determined by checking the eigenvalues of the linear system and thus, we can
naturally determine the perturbation parameters. This multiple time scaling of
the 1inear system decomposes the control problem and reduces the computation
required. In addition, the time scaling improves the numerical accuracy of
computation. This latter aspect is most important in view of the numerical sen-
sitivity of the Tinearization. This sensitivity arises from the presence of
tabular, non-analytical functions (aerodynamic coefficients) whose derivatives
must be given for the linearization. In Figure 4.3.5 we have summarized the
principal advantages and disadvantages of the three strategies we have discussed
in this section for making the SPT algorithm more efficient.

4.4 Accuracy of the SPT Approximation
4.4.1 State Space Dependence of the Accuracy of the SPT Approximation

The SPT algorithm discussed in the previous sections gives a control law
u(g,T) for the control problem (2.1) - (2.4) in terms of the current state £ and
the time-to-go T= te-t,- Let J(u3;E,T) denote the cost-to-go starting at the
state £ with time-to-go T and using the control law u. If V*(£,T) is the mini-
mum cost-to-go from the state £ with time-to-go T, then the expression e(u;&,T)

given by
(4.1)  e(usg,T) 2 J(usE,T) - V*(E,T)

defines a measure of the accuracy of the control law u compared to the optimal
control. Since V* is the optimal cost, it is clear that e is always nonnegative.
However, as the initial state & and the time-to-go T vary, we may expect that
the error e will vary also, being greater in some regions and smaller in others.
Let U specifically denote the SPT approximate optimal control law. For

any fixed initial state £=w and time-to-go T the error e(u;£,T) depends on the
singular perturbation parameter . As ¢ decreases to 0 we expect the error to
approach 0. However, the error does not approach 0 uniformly in £ and T. That
is, for a fixed perturbation parameter e, the error may vary greatly for differ-
ent values of £ and T. In this section we would like to show that the SPT ap-
proximation error increases as the initial state & approaches the terminal state

w. That is, as one nears the terminal target state, the SPT approximation breaks
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SUMMARY OF PRINCIPAL ADVANTAGES AND DISADVANTAGES OF
COMPLETE TIME SCALE SEPARATION, SUBOPTIMAL REDUCED ORDER SOLUTION,
AND LINEARIZATION OF BOUNDARY LAYER CONTROL PROBLEM

1. Complete time scale separation (see Subsection 4.3.2)

[ U PO S ~ o} - Y

vantage: Reduces dynamic trajectory optim
problem to static optimization
for control law.

Disadvantage: Introduces multiple time scales arti-
ficially and will be inaccurate if some
state variables are highly coupled; the
sequence of static optimization problems
may be as difficult to solve as the ori-
ginal dynamic problems for a large dimen-
sional problem where many time scales are
necessary.

2. Suboptimal Reduced Order Solution (see Subsection 4.3.3)

Advantage: Allows one to avoid solving the reduced
order problem exactly; thus, it is pos-
sible to treat larger dimension reduced
order problems.

Disadvantage: The suboptimal adjoint function must
be computed and approximated off-1ine,
although this should be easier to do
than to compute the optimal adjoint.

3. Linearization of the Boundary Layer Problem (see Subsection 4.3.4)

Advantage: Linearized controls can be computed ef-
ficiently and larger dimension boundary
layer problems can be treated.

Disadvantage: Linearization is valid only when the
.boundary layer state is near its optimal
reduced order value; thus, Tinearization
essentially gives only a control to track
the reduced order solution, and it will
be able to do this only as long as the
pseudocontrol for the reduced order prob-
lem does not jump discontinuously.

Figure 4.3.5.-Comparison of Advantages and Disadvantages of Complete Time
Scale Separation, Suboptimal Reduced Order Solution and
Linearized Boundary Layer Approximation.

101



down. Before discussing this breakdown in more detail, however, let us note that
the opposite phenomenon is true when the initial state is far from the terminal
target, at least in some cases; that is, the SPT approximation improves as the
initial state § increases its distance from the terminal state w.

As we will see in the next chapter, the aircraft dynamical system has the

general form

(4.2) ¥ty
(4.3) %% = g(y,u)

where the right hand side of (4.2) and (4.3) do not depend on x. In the aircraft
problem, (4.1) corresponds to the equations for the horizontal position coordi-
nates of the aircraft. The variables y are such that either through direct

state constraints or by definition (as in the case of angles) each component of
y has a maximum value. In the aircraft example y includes height, velocity,
heading angle and so on. The x variables, on the other hand, have a potentially
infinite range. If we scale the variables x and y such that the scaled quan-
tities x' and y' attain a maximum variation of order of magnitude 1, and if we
scale the time variable t so that the scaled time t' varies from 0 to 1, then

the original dynamic system (4.2), (4.3) is transformed to

a.

(4.4) qir = iyt

(4.5) e =g'(y',u)

where the parameter e is essentially the ratio of the maximum variation of y to
the initial distance from x to its target state Xg- Moreover, the functions f'
and g' in the aircraft example do not depend on the parameter e. Thus, in the
minimum time problem for the ailrcraft example there is at least one natural
singular perturbation parameter, and this parameter is proportional to the
distance from the target. Since we expect that the SPT approximation is best
when ¢ is small, we expect that the SPT approximation for the aircraft will be
good when the range is sufficiently long, but that the SPT approximation will
break down near the target when the range is short. Note that for the example
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we have considered, the SPT approximation starts to break down when the scale
parameter € in (4.4), (4.5) increases above .07. This corresponds to target
distances less than 163 to 176 Km.

4.4.2 . Inaccuracy of the SPT Approximation‘Near the Terminal Target State

It is the purpose of this subsection to show that one must be especially
careful when using SPT approximations to obtain closed loop, control law
approximations rather than open loop, control trajectory approximations. At the-
terminal time the SPT control law will not be the asymptotic approximation of
the actual optimal feedback control law. To illustrate what goes wrong we will
consider the following simple linear quadratic control problem. '

dx _
(4.6) E:a? =u

with the initial and terminal conditions x(0) =& and x(T) =1, respectively. The
cost criterton for the problem is

T
(4.7) J(u) =f 1/2(x2+u2) dt
0

The exact optimal control law is easily found to be

‘T/E _ m + e'ZT/E)

2e
(4.8) (€,T) =
u (l_e-ZT/E)

The OEb order SPT approximation, the first term of (2.6), is also easily found

to be

(4.9) 8(e,T) = -x+e /€

N

Note that we have written "§" in (4.9) to indicate that both the U and U (as
well as U) terms are accounted for.

To see how the SPT approximate control law in (4.9) differs from the exact
optimal feedback control law given in (4.8), we approximate the latter to first
order. First consider the region in which the time-to-go T satisfies T>»e.
The optimal feedback law (4.8) 1is then approximately, to order O(e'T/E),
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(4.12)  @(e,T) = -(g-1)

In this control problem (4.6), (4.7) one desires to reach the terminal
target x=1 by a fixed terminal time, say tf= 1. Then as the current time t
nears the terminal time te the optimal control law (4.8) takes this into account
through the time-to-go T= te-t becoming small. As the time-to-go T becomes
smaller, the optimal control law places more emphasis on hitting the target
exactly at the right final time te and less importance on reducing the quadratic
cost. The SPT control law (4.9), on the other hand, resembles a linear regula-
tor control around the terminal state x=1. Although such a control would steer
the state toward x=1, it would not be able to do so in a finite amount of time.
Hence, at the terminal time te the SPT controlled state will miss the desired
terminal state. To see more clearly what trajectory the SPT control produces,
let us integrate (4.6) with u=3U. Then we find that if £ is the initial state
with time-to-go T, the final state x(tf) using SPT control will be

(4.13)  x(tg) = € Ve + £ (1-e721/E)

If x=1 is the desired terminal state, then the error between this and the actual
terminal state (4.13) is given by

= € €
(4.18)  1-x(tp) =1-5+5

e—ZT/e _ e-T/eg

Thus, if the initial state £ is such that e-T/EE is small and the initial time-
to-go T is large compared to =, then the final error at the terminal time tf
will be approximately

(4.15) 1 - x(tg) = 1 _?e;

In fact, for any initial condition &, if the initial time-to-go is large enough,
then (4.15) will be true.

The situation is worse than indicated by the approximation of u given in
(4.12)! 1If we use the SPT control all along and the state x approaches too
closely to its optimal reduced order value x*=0, then x will still be close to
the reduced order value at the final time. To be exact, if at any time we ever
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have x < %3 then x(tf) < e.

A similar phenomenon occurs for more complex systems than the simple one
we have examined here. Essentially, the SPT control follows the reduced order
solution and is unable to anticipate discontinuities in the reduced order solu-
tion in order to cross the Jump of the discontinuity in the required amount of
time. In this example the reduced order value of x was O and the desired ter-
minal value was 1. Although the SPT control law begins to steer x away from
the reduced order value 0, it does not do it fast enough to meet the terminal
value and the resulting error (4.15) is fairly large.

The trouble we have described is not limited to the terminal region: so-
called internal boundary layers exhibit a similar behavior. To describe the
situation, let us refer to the two time scale problem of Subsection 4.2.2. In-
ternal boundary layers occur when the reduced order control problem gives a
pseudocontrol y*(£,T) with discontinuities for some values of current x-state &
and time-to-go T. Such discontinuities indicate that the real y-state, which
must be continuous, changes very rapidly. This rapid change is approximated
by a boundary layer and this requires us to modify our basic time scale approxi-
mation (2.38) of the optimal control u* for the full system as follows:

(4.16)  u* = k)io {[8 (1) - T (tg)] + Ly (p) - T (t)] + T, (¢)
+ [0, (0) - Gy (te) 1} X

where ti is the time at which the reduced order solution exhibits a discontinuity

in the pseudocontrol y* and p is the fast time scale for the internal boundary
t-t.
i

layer given by p= =

The argument we made in Subsection 4.2.1 concerning the terminal boundary
layer also holds for the internal boundary layer--as long as the time t is not
close to the time ts. We may neglect the contributions Uk from the internal
boundary layer. Near to the internal boundary layer time the SPT approximation
breaks down in the same way that it did at the terminal time. Essentially, the
SPT control law does not anticipate the sudden rapid change in the y variable.
An optimal control would begin steering y across the discontinuity before the
internal boundary layer time ti was reached. The SPT control, on the other
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hand, does not do this until ti is reached, and then it steers y to the reduced
order value y* after ti‘ R

At the present-time:we do not have'a solution to this fundamental problem
of using SPT control law approximations'near the terminal target or at internal
boundary- layers, -but clearly the problem is essential for any application of
SPT.methods to obtain feedback control laws. At the very least, it will be
necessary to identify the regions where the SPT feedback law breaks down so that-
one may switch from the SPT control to a better control law. For obtaining the
control law near the terminal target, it may be possible to develop useful ap-
proximations different from the SPT approximation. For example, linearizing
some of the state variables around their terminal values may prove useful. How-
ever, whatever method of approximation is used near the terminal target, the
important problem to solve will be to determine how to match this approximation
with the SPT approximation--in other words; to determine when and how to switch
from one type of control to another.
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APPENDIX 4.1
MULTI-TIME SCALE SPT FORMULATION AND CALCULATION

' In this appendix we present the SPT formulation and calculation of the
feedback Taw in more detail than in Subsection 4.2.3. Throughout this appendix
we will maintain the same notation as we did in that subsection. In addition,
let us define x, as '

(1.1) X; = (xl,...,x1)

just as we defined £' in (4.2.79). Likewise, define fi by

(1.2)  Fi06u) = (Fxu),. .. f (x,u)

The SPT method seeks to approximate the control system in equations (4.2.1)

through (4.2.4) by finding an asymptotic expansion to the singularly perturbed
system

i
(1.3) e 9%- = £ (x,u)

with the same cost criterion

te
(1.4) J(u)=i/. L(u,x) dt
to
the same initial conditions
(1.5)  x'(tg) =&
and the same terminal conditions

(1.6)  x'(tg) = o
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In (1.3) the parameters €; are such that €9 = 1 and for each i we have
(1.7) €i+1/€i +0

as ei-»o. In reality, of course we will be using the approximation for e;=1 1
for all i. The relation (1.7) represents the assumption that the variables x1
vary on different time scales which become increasingly faster as i increases.
Although the multi-time scale SPT approximation is conceptually no more
difficult than the two time scale case, the notational difficulties in the multi-
time case become extreme. Therefore, we will try to simplify the problem at
an abstract level as much as possible before working on the control problem.
Working at the abstract, more general level we can avoid some of the notational
obscurities and maintain a modest level of clarity.
The essential idea of the SPT abproximation is to approximate a trajectory
z(t) for ty< tste, where z represents all the state components, adjoint com-

ponents and controls. The 0Eb order approximation has the general form:

(1.8)  2(t) = [2(T) - 2(t))] + Z(t) + [2(3) - Z(tg)]

where the vectors T and o represent the multi-time scales, namely,

>

(1.9) T = (TO,Tls...,Tr)

(1.10) G = (0gs0y5--+50,)

t-t t-tf

where T4 is defined 3572 0 and o5 is defined ;= As for the two time

scale case, we need only cOnsider the initial boundar} layer represented by the
term Z in (1.8). For multiple time scales, the Otb order approximation of the

initial boundary layer term has the form

(L11) 2@ = 2y(r) + ): (24,1 (Tg0p) - 25(0)]
X

where the terms z do not denote different components or combinations of com-
ponents of z as we defined x' and X; previously. The z1 all have the same
dimension and represent the approx1mat1ons of z on each of the different time
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scales Ty-

The expressions ii must have the asymptotic property that

(1.12)  im 2,(ty) = 2,_4(0)
1

for each i=1. For this reason, the approximation (1.11) of z(0) is given by

(1.12) 2(0) = Er(O)

Compare this to our discussion in Subsection 4.2.1. The approximation (1.11) is
analogous to the first term of (4.2.44). Thus, to obtain the SPT approximation
to z(0) we need to calculate the value of Er(o), the fastest initial boundary
layer approximation at Tr==0, To do this, however, requires first computing
the slower initial boundary layer approximations.

The dynamic system for the time scale T3 is obtained by transforming (1.3)
to the independent variable Tye Thus, we have

J €. -
(1.19) =), 0si<i
i i
dxi i
(1.15) == = f (x,u)
dTi
i J .
d i s s
(1.16) E_8X = fl(x,u), rzj>i
e’ dTi

The Otb order approximation is obtained by letting sr-+0 and using the relations

(1.7). The equations (1.14) - (1.16) then become

dxj -
dx' i
(1.18) dT. = f (x,u)
1

(1.19) 0 = f(x,u), r=j>i
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These threé'equations can be summarized in the two equations

- B LI P B
R e L

. . i
(1'21) 0= gi(;i_l’x ’U.i) _

The equations (1.20) and (1.21) represent the dynamical equation and'equa1ity
constraint, respectively, for the itb 1eVe1-system operating on the time scale
T;. The initial conditions for the state x' in this problem are those given

by (1.5). The terminal conditions, however, are determined as a result of the
solution of the control brob]em for the (1'-1)15b level. These terminal conditions
are chosen to satisfy the asymptotic relation (1.12). Likewise, the cost cri-
terion for the 1‘tb level is determined on the (1'-1)tb level by the adjoint for
the (i-l)tb level. The terminal condition is given in (4.2.92) and the cost

criterion is given in (4.2.93) of Subsection 4.2.3.
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APPENDIX 4.2
THE EXISTENCE OF SOLUTIONS TO THE BOUNDARY LAYER CALCULATION
IN THE CASE OF COMPLETE TIME SCALE SEPARATION

In this appendix we consider the SPT a]oorithm’s caTcU]ation'df the centrbl
law for a dynamic system for which we have assumed comp]ete t1me sca]e separat1on
To s1mp11fy matters let us First cons1der the case of two t1me sca]es where X
and 'y represent the slow and fast var1ab1es respect1ve1y We assume that both
are ‘scalar state variables. Let u denote the vector contro] var1ab1e for the .
problem, and let L(x,y,u) denote the 1nteqrand of the cost cr1ter1on The dynam1c
equations for the system are

(2.1) &= floy.u)
(2.2) %%-= g(x,y,u)

As discussed in Subsection 4.3.2, the SPT algorithm calculates the control law
for this system in two stages as follows. Let Xg denote the given final value
for the x state variable. The first stage of the SPT calculation is to solve

(2.3) min{Z%%%f%f%} : g(x,y,u)

if X< Xgs and to solve

(2.4) max{l{_. i:y::“ 2 g(x,y,u) = 0, f(x,y,u) < 0}

0, f(x,y,u) > 0} = -A%(x)

-xx(x)

if x>xe  Let y*(x) denote the optimal pseudocontrol and let U*(x) denote the
optimal control which solve (2.3) and (2.4).
The second stage of the SPT algorithm is to solve

L(x,y,u) + X% (x)F(x,¥,u)
g(x,y,u)

(2.5) min : g{x,y,u) >0

"i;(x :y)
if y<y*(x) and to solve
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L(xsy,u) + 25(x)f(x,y,u)
g(x,yu)

(2.6) max : g(x,y,u)<0p = -X;(XsY)
if y>y*(x). Let u*(x,y) denote the optimal contral which solves-(2.5) and (2.6).

The problem is whether or not we can actually obtain a solution to this-
algorithm, at least in principle. The question arises because it is not at all
clear that the minimum or the maximum exist in (2.3), (2.4), (2.5), (2.6). In-
deed, given numerical inaccuracies it is possible that numerical optimization
algorithms will not converge to a solution unless care is taken in setting up
the problem. It is the purpose of this appendix to show that under reasonably
general circumstances it is possible, at least theoretically, to obtain finite
solutions to the minimization and maximization problems above and that we can
obtain at least one solution u*(x,y). Thus, nonconvergence of optimization sub-
routines within the SPT algorithm must be due to numerical difficulties (which
can be repaired) and not due to the lack of a solution to the minimization or
maximization problems within the SPT algorithm. Thus, the SPT algorithm will
yield a control value for any input state value--at least in theory. This fact
was reassuring to know when some stages of the algorithm proved to be sensitive
to numerical error.

The first step in our argument is to prove a small lemma. Notice that in
this Temma the optimization problem represents an abstracted and boiled down
version of one of the stages of the SPT algorithm mentioned above. Thus, to
find solutions to the SPT algorithm above, we will only have to apply the lemma
to each stage, one after the other. The reader who is unfamiliar with the mathe-
matical analysis required in the statement and proof of this Temma may skip to
the theorem and remarks following the theorem. The analysis required here may
be found in any introductory book on real analysis such as Rudin (1964). The
main result of mathematical analysis which we use is the fact that a continuous
function for a compact set K always achieves a finite minimum f(zl) and a finite
max imum f(zz) for some z; and Z, in K.

Lemma
Let K denote a compact (closed and bounded) set in R" and Tet f and L denote
continuous functions from R" into R. Suppose that for all z in K such that

f(z) =0 we have
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(2.7) L(z) >0

Furthermore, suppose that there is a z in K such that'f(zo)>»0.
Then there exists a z* in K such that f(z*) >0 and such that for all z in
K such that f(z) >0 we have

(2.8) %((%>%E—;—:-}

That is, z* minimizes L(z)/f(z) for all z in K such that f(z) > 0.

Proof of the Lemma

The proof is rather simple. Essentially we show that (2.7) implies that
as f(z) approaches 0, the ratio L(z)/f(z) approaches +», Thus, we can show that
there is a positive constant § such that we can restrict ourselves to z such
that f(z) =8 is the minimization of L(z)/f(z). Once this is done, standard
compactness arguments show that z* exists.

Let Z denote the set of z in K such that f(z)=0. Note that Z is compact
and since L is continuous, L must have a nonzero minimum on Z. That is, there
is a constant €>0 such that

(2.9) L(z) = ¢

for all z in Z. Let Zp denote the set of all z in K such that the distance
d(Z,z) from z to the set Z satisfies d(Z,z) <p. The set Zp is relatively open
in K, and K-Zp is compact. Since L is continuous and since Z is compact, (2.9)
implies that for sufficiently smalil p, we have

(2.10) L(z) z-%

for all z in Zp.

Let Kg denote the set of points z in K such that f(z)=68. Note that Ks is
compact and disjoint from Z. Since Z is also compact, we can choose p small
enough so that K(S and Z are also disjoint.

Choose § so that 6<'F(zo) and so that

L
(2.11) = > .

(20)
268 zZ,
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Next choose p so that Zp is disjoint from K(S and so that (2.10) is satisfjed for
z in Zp. Then it is clear that for z in Z we have

L(zp)
(2.12) oy < fg))

Thus, the minimum of L(z)/f(z) must 1lie in K-Zp. The function L(z)/f(z) is con-
tinuous on this compact set K—Zp and hence, standard theorems imply the existence:
of a z*¥ minimizing L/f.

Given the lemma above, it is fairly easy to show that under reasonably gen-
eral conditions, the SPT algorithm generates a well-defined solution. In the
following theorem we note the general conditions under which a solution can be
obtained to the SPT algorithm.

Theorem (Existence of Solutions to the SPT Algorithm)
Assume the following are true:
1) For all x there are compact sets, JX and Kx such that yezJXc:R1

and ue Kxc R,

2) For all x the functions (y,u)-f(x,y,u), (y,u)~>g(x,y,u) and
(y,u) >L(x,y,u) are continuous.

3) For all x,y,u such that f(x,y,u) =0 and g(x,y,u)=0 we have
L(x,y,u') >0, if x#xg.

4)  The optimal pseudocontrol y*(x) solution to the first stage of the
SPT algorithm is unique for each x.

Then the SPT algorithm has a solution u*(x,y).

Remarks

Before sketching the proof of this theorem let us comment on the above
assumptions (1) - (4). The first assumption in (1) above merely requires that
we can restrict y and u to a bounded set in R1 and R" respectively for any
given x. The second assumption is obvious. The third assumption (3) is natur-
ally satisfied for many cost criteria (e.g., the minimum time and quadratic
criteria, but not the minimum fuel criterion). The first three assumptions
guarantee a solution to the first stage of the SPT algorithm. The fourth
assumption 1is necessary to guarantee a solution to the second stage of the SPT
algorithm. If there is more than one solution y*(x), then the fast boundary
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layer problem in the second stage of the SPT algorithm will have more than one
possible terminal condition. Such ambiguity would require an investigation
going beyond the first order necessary conditions provided by the minimum prin-
ciple to obtain the actual optimal control u*(x,y) for the fast boundary layer
problem.

Proof of Theorem

The first three assumptions (1) - (3) permit direct application of the -lemma
to prove the existence of a solution y*(x), u*(x) to the first stage of the SPT
algorithm, for x#Xe. If x=x¢and y=y*(x), then the fourth assumption (4)
implies that for all u such that g(x,y,u) =0 we have

(2.13) L(x,y,u)i-kxf(x,y,u) >0

From (2.13) we can again apply the lemma directly to prove the existence of a
solution u*(x,y) to the second stage of the SPT algorithm. Note that u*(x,y)
need not be unique. //

For more than two time scales with complete time scale separation, the exis-
tence results are similar. The essential assumption, besides the obvious con-
tinuity and compactness assumptions, is the positivity of the original cost
criterion when the slowest state variable is not at its terminal value (i.e.,
we also assume that the generalization of assumption (3) is true), and in addi-
tion, the optimal pseudocontrol for the next faster state variable is unique at
each stage. For example, if there were a state variable z which was faster
than y, then we would have to assume that the pseudocontrol value for z cal-
culated at the second stage (y boundary layer problem) was unique. Note again
that this assumption is necessary even to make sense of the SPT algorithm.
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(1.18) T . =T (hE)

(1.16) L = L, (h,E)a

(1.17) Vmax = Vmax(h)
Note that in the energy state formulation the velocity V is simply shorthand for

the function of E and h given by

(1.18). Vv = /Zg(E-h]

Note also that E is a specific energy measured in units of height. The constraint
bounds o and Onax 2re constants in (1.9) and (1.11) respectively. The constraint
(1.13) is present only to guarantee that the square root in (1.18) is well-
defined. In a model which includes both E and h as state variables this con-
straint will not be necessary, since the dynamic equations will never allow the
height h to exceed the energy E. However, in reduced order models which include
only E the constraint will be necessary since h will be a free control.

The control problem is to steer the system (1.3) - (1.8) from an initial
state (xi’yi’Ei’Bi’hi’Yi) at ty to a final state (xf,yf,Ef,Bf,hf,yf) in minimum
time tf-to. Thus, the integral cost criterion for this problem is the same as

(3.2.6), namely

Ki
(1.19)  J(a,0.u) =‘[' 1 dt
\ to

Since the final time tf is not fixed, the Hamiltonian for this problem is
identically 0 along an optimal trajectory. Note that the Hamiltonian is given

by

_ V(uTmaxcosa- D)
(1.20) H =1+AV cosBc05y-+AyV sinBcosy + Ap g
s (L4-uTmaxs1na)s1nc e AV Sime 2 (L4-uTmaxs1na)coso-mg cosy
B mV cosy h Y Y mV

To approximate the optimal control law for this minimum time problem we will
follow the procedure outlined in Section 4.2 of solving a sequence of smaller
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dimensional control problems corresponding to different time scales for the .

problem. o
At this point we will indicate how the time scale separation was chosen.:

Previeus work such as Kelley (1971a,b, 1973c), Kelley and Lefton (1972a) and

PR L9 avi LGy

Parsons (1972), which considered three dimensional maneuvers, and -hence con-
sidered turns, indicated that the basic time scale separation consisted of the
. successively faster groups (x.y), (E,B) and (h,y). Generally, ‘B was considered
faster than E and y was considered faster than h, although Kelley (1973c) noted
that E might be considered faster than 8 in some situations.. As we have dis-.-
cussed in Section 4.4, the accuracy of a feedback control ca1cu1ated with a
particular time scale separation depends on the region of state space in which
the -control is a
separation will be accurate for all regions of state space. Indeed, near the
terminal target all time scale separations are.inaccurate, i.e., the SPT assump-
tion of any time scale separation is invalid near the terminal target.

Although there is as yet no systematic theory to determine the proper time
scale separation for a given region of state space, we .present the following: .-
observations for guidance. The time scale separation for an optimization prob-
lem seems to depend on two factors: (1) the sensitivity of the immediate cost
with respect to the current state variables and (2) the sensitivity of the long
term cost with respect to the current state variables. It appears generally ..
that the most sensitive states should be considered slower than the least sen-
sitive states. In addition, it appears that the sensitivity of the long range
cost is important when the target is near (short term problem) and that the sen-
sitivity of the immediate cost is important when the target is far (long rarnge
problem). It is important to note that sensitivity analysis of the two kinds
of cost, immediate and long-range, can result in different choices of time
scales. The right choice depends on the broximity of the target.

The sensitivity of immediate cost is determined mainly by the relative
magnitude of the time derivatives, at least in the minimum time optimization
problem. The most sensitive states (with respect to immediate cost) are the
ones with the smallest derivatives and hence the slowest in terms of actual
time variation. ' '

We carried out a sensitivity ana]ys1s for the a1rcraft mode] presented in
Chapter 1 as follows. We first scaled all state var1ab1es and der1vat1ves so
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that the state variables and time-to-go were of order one (the maximum variation

of each variable was one). That is, we let §==R y-—%- where R = range-to-go,
. _ s s . _
\-/=% where V = maximum speed, h=ﬂ where h = the cruise altitude, E=% where
S S . S.
ES cruise energy, —%~ where t g = mi inimum time-to-go, namely R /V Since B8

s
and vy are angles and already vary on the order of one, we left them unscaled.

Similarly, we scaled 1ift, drag and thrust in terms of their maximum values.
With this scaling we obtained the following equations:

dx _ 7

(1.21) a%-= V cosBcosy
(1.22) g%—= V sinBcosy
dE _ . v=
(1.23) ea;-— GEVF”
dh _ . &
(1.24) aa%-— GVV siny
F
(1.25) &% = _l _ 5 cosy
dt v Wy
F sino
dg 1
.26 — T =
(1.26) Edt V siny

where ?” is the force acting parallel to the plane, namely

(1.27) F T cosa - 6D

= oy D

I

in terms of scaled thrust T and drag D. Similarly, ?l is the perpendicular 1ift
force

(1.28) FL = L4-6TT sina
in terms of the scaled 1ift L. For the aircraft used, the parameters had the

approximate values 6E= 1.1854, 6w==.0430, 6D .0313, 6 .2503, 6 .0475 and
€ =3.0516/N where N=number of kilometers in the range- to ~go.
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From this scaling in equations (1.21) - (1.26) we clearly see the separation

~ of x,y from E,h,y,8 for long-range (large N) problems. In addition, note that
dE '

‘there is a mi]dek'separation of E,h,y and B. The order of = is GEGD: .04, the
order of g-'_3-1'5 6Vz .25 and the order of both Si-—1f-and gg—is of order 1. On the
dt dt - dt

basis of this séa]ing; there appears to be a time scale separation making x,y
F

i X
the slowest variables with E next, h after E with v,B8 together as the fastest.

However, two important points are in order. First, in our model aircraft the
angle-of-attack o was restricted so that > 0. Thus, in equation (1.25) we can
only have the dominant term ?L-nonnegative. Practically speaking, this means
that the aircraft can accelerate upward much faster than it can accelerate down-
ward. This fact was supported by simulation runs which showed that it takes
much more time to decrease y than to increase it. In effect, if y must be de-
creased, then it varies more slowly than B. The second point we wish to make

is that time scale separation is also determined by sensitivity of the long term
cost-to~go. Thus, it is possible that B should be considered siower than its
ranking in equations (1.21) - (1.26) by virtue of its effect on the long range
cost-to-go. Unfortunately, we have no method for analyzing the sensitivity of
the cost-to-go for such a complex optimization problem as the one at hand.
Therefore, we considered both the conventional orderings (x,y), (E,B), h, v and
(x,¥), E, B, h, v as well as the ordering (x,y), E, h, vy, 8 indicated by the
scaling and our discussion given above. For the initial conditions studied we
found that the latter ordering yielded faster times than the conventional ones
(mainly due to the asymmetric behavior of v dependent on whether it is increasing
or decreasing). Note that if B is considered to be the fastest variable, then
the SPT algorithm is considerably simplified. One essentially calculates o and
u for vertical plane flight and adjusts o continuously to head to the target

(or the predicted position of the target). The other orderings are considered
in Section 5.4 (E faster than B, 8 faster than h or y) and Section 5.5 (E,B
together faster than h or v).

In the following sections we will first work through the analysis required
for the solution of each of the control subproblems, and then we will summarize
the resuliting algorithms and note the computation required for their on-board
execution. As we noted in Section 4.2, the SPT approximation involves solving
a hierarchy of control problems which must be solved in sequence (see Figure
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4.2.2). Thus, the total time required to calculate one update of the aircraft
controls by means of the SPT method is the sum of the computation times required
for each of the algorithms which.solve the individual subproblems. In addition
to noting the computation time required for the individual subproblem algorithms,
we Will also note which functions must be stored and which quantities cou1d be
obtained directly from a1rcraft sSensors.

The organization of this chapter roughly follows the separation of time
scales we have assumed for the aircraft model. Thus, Section 5.2 discusses: the
X,y reduced order problem, Section 5.3 discusses the E boundary layer prob]ém,
and Section 5.4 discusses the 8 boundary layer problem. Due to the difficuity
of computing the B boundary layer solution we discuss the use of a suboptimal
solution in Section 5.5. Then 1in Section 5.6 we discuss the h boundary layer
problem and finally, in Section 5.7 we discuss the vy boundary layer problem which
operates on the fastest time scale. |

In each section we have discussed the computational requirements as well
as the analysis required for the solution. In addition, in Sections 5.2 and
5.3 we have discussed the possibility of linearization to solve the faster
boundary layer problems corresponding to the subproblems of those respective
sections. Thqs, in Section 5.2 we consider the possibility of linearizing around
the x,y reduced order solution as a nominal value to obtain Tlinear cotrols for
the E,B,h,y boundary layer problem. Likewise, in Section 5.3 we consider lin-
earizing around our suboptimal solution for E to obtain linear controls for the
corresponding faster boundary layer B, h and Y.

Figure 5.1.1 shows the complete control logic for .long range interception.
It involves an iterative calculation of the intercept point and the intercept
time, tf. In addition, the calculation of heading on the cruise arc and controls
for the three parts of the trajectory (before cruise, cruise and after cruise)
is also performed.

5.2 The Reduced Order Problem in x,y: The Cruise Solution
5.2.1 X,y Reduced Order Control Problem and Feedback Solution

By considering x and y on the same time séale and all the other states in
(1.3) - (1.8) on a faster time scale we obtain the reduced order dynamical system
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Input initial conditions
for interceptor and target
aircraft

Compute t

Update tf Compute final coﬁditions
“for interceptor aircraft -

—>|Update heading{— “mﬁgiecﬂﬁi’ﬂl"ﬂri"g’e

l l

Compute minimum time 'Compute minimum time
trajectory onto cruise trajectory from cruise
arc from initial conditions arc to final conditions

L l

NO ruise arc
continuity?

NO
SPT Computation Computation of
of controls for controls for
climb to cruise descent from

arc cruise arc
timality
. NO ptima; YES Impiement control and
Iterate solution ngg;g;ggi lupdate initial conditions

Figure 5.1.1
Overall Control Logic for Long Range Interception
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(2.1)° %%—= V cosBcosy

(2.2)f: ) g%-= v sithosy

_ V(uTmaXCOSa-D)

(2.3) 0 5
(L+uT___sina)sino
_ max
(2.4) 0= mV cosy
(2.5) 0 =V siny
(L+uT___sina)cosc - mg cosy
(2.6) 0 = max 7

together with the constraints (1.9) - (1.13). The Hamiltonian for this problem
is

(2.7) H=1+XV cospcosy+2V sinBcosy

y

and since the problem is to minimize time, the Hamiltonian is identically 0 along
the optimal trajectory. The pseudocontrols E,h,8,y and the controls a,o,u are
chosen to maximize the velocity V subject to the equality and inequality con-
straints and satisfy the x,y terminal conditions. Thus, one easily finds that
the optimal pseudocontrols for the reduced order problem are given by:

(2.8) E* = Ec
-1 .yf".y.i
(2.9) g* = tan = ——
Xf-X_i

(2.10) h* = hc

(2.11) y*=0
(2.12) a*=a

(2.13) o*=0
(2.14) u* =y
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where the subscript "c" denotes constant cruise values. Lgt Vc denote. the cor-
responding maximum cruise velocity determined from Ec and'hc by (1.18). For
our particular aircraft, which is taken from Parsons (1972), these constants
are given by : ‘

(2.15) £ = 2.9949x 104 m
(2.16) h; = 1.2192x10% m
(2.17) o, = 1.509°

(2.18)  u, = .8928

(2.19)  V, = 590.2 ms”"

In order to define the cost criterion for the E boundary layer we need to
obtain the adjoints Ax and Ay for this reduced order problem. This is easy to
do and we find that they are given by the expressions

( ) cossc
2.20 A= -

X VC

sinBc

(2-21) }\y - - vc

where we have introduced the notation Be for the angle given by (2.9) or by

Xf-Xi

'((xf-xi)2+(yf-y,-)z)»2

"

(2.22) cosBC

‘yf-y'i
((xf-xi)zi-(yf-y,-)z)Lz

(2.23) sinBc

Note that (2.22) and (2.23) uniquely define B as the heading angle between the
initial point (xi,yi) and the final point (xf,yf), measured from the positive -
x direction to the 1ine between these points. Note that we can rewrite the.
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control law for 8* in (2.9) as

(2.24) B* = B,
For convenience we will use the simpler expression (2.24) in the future rather
than the expression (2.9). However, it should be kept in mind that Be is a
function of the current x and y states as expressed in (2.9) or in (2.22), (2.23)

The cost criterion for the next level of the SPT hierarchy of control sub-
pfob]ems is found by substituting the expressions for the adjoints Ax and Ay
from (2.20), (2.21) into (2.7) to obtain

(2.25) L =1-7 cosycos(g-8,)
(o}

5.2;2 Computational Requirement for the Solution

Clearly, the computations required in this reduced order problem are trivial.
A11 the controls and pseudocontrols are constants which are precomputed and
stored, except for the pseudocontrol B*= Bc’ which is easily computed using one
of the inverse trigonometric functions from (2.9), (2.22) or (2.23). Figure
5.2.1 summarizes the computational requirements at this level.

Storage Calculation o
Ec (constant) Be
hc (constant) (by means of

o, (constant) equation (2.9)

c or (2.22) or
u (constant) (2.23))

Figure 5.2.1
Computational Requirements of x,y Reduced Order Problem

_ Note that these are the minimum on-board calculations that must be made and the
minimum storage required for the x,y reduced order problem. At faster levels
we will assume that Ec, hc’ acs U have already been stored and that Bc has
already been calculated, and we will not count this storage or calculation in
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the computational requirement for the faster level solution. In this way, the
total on-board computational requirement for the problem will be obtained by
adding together the requirements at each level without the risk of counting

5.2.3 -Linearization Around the x,y Reduced Order Solution

In Subsection 5.3.4 we discussed the possibility of linearizing’ the boundarv
layer problem arbund the reduced order solution. In this case we would obtain
a linear, quadratic criterion, time invariant, infinite time problem in the per=
turbations of E, B, h, v, u, o and o from their optimal values computed in the +*
X,y reduced order solution. The Tinear control problem has a simple control law

of the form
u u. E EC
(2.26) g = + G| B- BC
a /- o h-nh

Y

where G is a constant 3x4 gain matrix computed off-line. _

The equation (2.26) gives us the linear regulator control to maintain the L
cruise conditions of the aircraft. Thus, on the cruise portion of the trajectory
the full control law for the aircraft is particularly simple. Figure 5.2.2
summarizes the on-board computational requirements in this case.

Storage " Calculation

G ' u, g, o
(a 3x4 . (by means of
array of equation (2.26))
constants)

)i Figure 5.2.2
On-Board Computational Requirements During Cruise
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5.3 The Initial Boundary Layer Problem in E

5.3.1 E-Boundary Layer Problem and Feedback Solution o _
By considering E on a faster time scale than x or y and on a slower time -

scale than B, h or y, we obtain the following boundary Tayer dynamical system

for E:

V(uT___cosa - D)

dE _ max
(3.1) rr g
(L+uT___sina)sino
(3.2) 0= max
mV cosy
(3.3) 0=V siny
(3.4) 0 - (L*—uTmaxsina)coso-mg cosy
' mV

together with the constraints (1.9) - (1.13). The cost criterion for this problem
is found from (2.25) to be

(3.5) J = [1--! cosycos(B-R.)] dt
0 VC c

The initial condition is given by E =Ei but the final condition is given by
E= EC and not by E = Ef. In particular, we see that the resulting’SPT control
law will fly the plane to the cruise condition but will not yield a control
which will give some final energy other than the cruise energy. We have dis-
cussed this problem more generally in Subsection 4.4.2. We discuss a possible
solution for this particular aircraft problem in Section 5.5 of this chapter.
Since the control problem for this boundary layer has only ope state dimen-
sion, we may use the technique of Subsection 4.3.2 to solve for the feedback
control law by minimizing or maximizing the expression '

mg(l-% cosycos(B-B.))
C

(3.6)

V{uT 4 C0sa - D)

ma
with respect to the pseudocontrols B,h,y and the controls u,oc,a such that the
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inequality constraints of (1.9) - (1.13) and the equality constraints of (3.2) -
(3.4) are maintained. In addition, if we are minimizing (3.6), then we must
restrict ourselves to pseudocontrol and control values such that g%-given by
(3.1) is positive, and if we are maximizing (3.6), then we must restrict our-
selves such that %%-is negative.

From the equality constraints it is not hard to deduce that

]

(3.7) Yy=0

(3.8) c=0

Thus, the pseudocontrol y and the control ¢ are unchanged from their values given
h

A A e bhasa
i0C Nar

hir +4ha v 2 vadis~and A [, ATiidT A Maanmismrn T+ I
DUy LIS A,y TtUuulLtcu vruer suiputiuil,. FIOrecuver, 1L o>

m
v._-_l-
o
ot
(_-:i-
™

L on
LU >t

[

optimization problem gives

(3.9) B = B,
so that the pseudocontrol B8 also has its reduced order value. Substituting (3.7),
(3.8) and (3.9) into the original E-boundary layer problem, we obtain the fol-
lowing optimization problem. We must maximize or minimize the function

m9(1-¥)
(3.10) ¢
: V(uT___cosa- D)

max
subject to the equality constraint

(3.11) 0 = LlfuTmaxsina-mg

together with the inequality constraints (1.9), (1.10), (1.11), (1.12). Using
the equality constraint (3.11) to solve for u and substituting this expression
back into (3.10) we obtain the expression
v
mg(l-v )
Ve
V([mg - L]coto - D)

(3.12)

which we must maximize or minimize, according to the convention described above
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after (3.6). By eliminating u we also obtain a new inequa]ity.cOnstraint onV
and o corresponding to the original constraint on u in (1.12). The new constraint

is
T __si -
max> ¢

We have now reduced the optimization problem to a problem involving only
two variables, V and a. Let us now consider V fixed and examine the dependence
of (3.12) on a. Using (1.14) - (1.16) we can write the o dependence explicitly
in (3.12) as

mg(1-7 )

(3.18) — ¢ 5
‘._ V([mg - Laa]cota-DO~ Lana )

Similarly, the inequality constraint (3.13) becomes

mg - Lau

(3.15) 0 € —rr—
TmaX51na

<1

It is not hard to see that for a in the range O<o<m the denominator of (3.14),
namely
(3.16) | V([mg - Laa]cotu - DO - Lanaz)
is a strictly decreasing function of a. Thus, the expression (3.14) is an in-
creasing function of a in this range. Note that this range easily includes all
admissible o since ag<m (in our aircraft example Og = 12°). |
Since (3.14) is monotonically increasing in o, in order to maximize (3.14)
with respect to o we must choose the largest possible a consistent with the in-
equality constraints (3.15) and (1.9). Similarly, if we wish to minimize (3.14),
we must choose the smallest possible a consistent with the inequality constraints.
Note that the function
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( ) (a) HEL:}Eii—
3.17 u(a) = -
. Tmaxs1na

which appears in the inequality constraint (3.15) is monotonically decreasing in
o for admissible o (in fact, for all a such that 0<:a<:%). The monotonic beha-
vior of the function (3.17) allows us to describe the maximum and minimum allow-
able values of a fairly easily. There are essentially three different cases to
consider. | ' ' e

Case 1. This case corresponds to

(3.18) Lot Ty Sina. < mg

In this case there is no admissible a which satisfies the inequality constraints
(3.15) and-(1.9). Physically, (3.18) represents the stall constraint for the
plane and it defines the region in which the plane cannot maintain vertical equi-
librium using both 1ift and thrust forces.

Case 2. This case corresponds to the two relations
(3.19) Laas < mg
and

(3.20) Tmaxsinasi-Laas > mg

Physically, there is less 1ift force than the weight of the aircraft, but by
using maximum thrust in addition to 1ift, the plane is able to maintain equili-

brium. The maximum admissible a is given by a=a The minimum admissible a is

.
given by solving the equation

(3.21) Tmaxsinai-Laa = mg

Case 3. This case corresponds to

(3.22) Lo = mg

Physically, the aircraft has enough 1ift to maintain vertical equilibrium by
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1ift force alone. The maximum admissible o is_giVen by

(3.23) a = %9

a

and the minimum admissible o is given by solving (3.21) as above.

The argument above concerning o allows us to express o as a function of V
and E, and hence allows us to eliminate o from the problem to optimize (3.14).-
Since the aerodynamic quantities La’ D0 and Tmax are given only as data, we must
solve the V optimization numerically. We have done this off-line and stored the
resulting optimal control laws V*(E). Note that there are two V* controls, one
corresponding to the maximization and one corresponding to the minimization of
(3.14). We have found that for the optimal V=V*(E), only Case 3 above occurs.
Thus, the throttle control u is 0 or 1 depending on whether E is above or below
the cruise energy Ec’ The angle-of-attack o is chosen to maintain vertical equi-
librium, i.e., to satisfy equation (3.23) if u=0 and to satisfy (3.21) if u=1.
In Figure 5.3.1 we have summarized the SPT feedback control law for the E-boun-
dary layer.

To obtain the cost criterion for the next level control problem, we need
to obtain the optimal adjoint AE for the E boundary layer problem. This is

easily accomplished by solving

V* V*

(3.24) 0= 1-VZ=+AE m (T*cosa* - D*)
Note that (3.24) gives AE as a function of V*, which in turn is a function of E,
namely
V*
mg(v—- 1)
(3.25) A= <

V*(T*cosa* - D*)

We may either store AE explicitly as a function of E or we may compute AE from

V*(E) using (3.25). However, the latter approach requires us to store the aero-

dynamic functions T*, D*.
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. Read in E

Call V*(E) Call V*(E)
minimizing (3.14) maximizing (3.14)
compute « compute a
from (3.21) from (3.23)
u=1 u=40

Figure 5.3.1.-E-Boundary Layer Algorithm.
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5.3.2 Computational Requirements for the Solution
~ The important new quantities compute |

the pseudocontrols V*(E) and h*(E), the controls o*(E) and u*(E), and the adjoint

AE(E). We have stored V* (for both E<E. and E>'E ) as a function of E. From

V*(E) we can easily compute h*(E) as

wed

AhT Am

Di&i are

anddFiac ~amnhitda

[«

an +ha € Tauanl ~Aandtuna oY
1 LI o ICVCI LUIILIUI prou

(3.26)  h*(E) = E - yt%%iﬁ
The control function u*(E) is a trivial switch function as can be seen from

Figure 5.3.1. For E>E., we have u*(E) =0 and for E<:EC we have u*(E) = 1.

_ The control o*(E) is obtained from solving (3.21) if E< EC and from solving
(3.23) if E>-EC. Equation (3.21) gives o only implicitly so that we must approxi-
mate the exact solution. For Lu:» mg, the linear approximation sina=a gives an

explicit formula,

(3.27) o*(E) = =—09

for a*(E). Using Newton-Raphson's method with (3.27) as an initial guess, we
can obtain a better approximation of a*(E) with only a few iterations.

On-board computation of o*(E) from either (3.21) or (3.23) will require
storing the aerodynamic functions TmaX(E,h) and La(E,h). The function Ly, has the

form

(3.28) L, =%C (M)o(h)V

where S is a constant, M is Mach number related to velocity by the equation

(3.29) M= E%’W

where c(h) denotes the speed of sound at altitude h. Thus, to store La(E,h) it
suffices to store functions of only one variable and then compute La from these
using (3.28).

The function Tmax’ on the other hand, is only given as data and is not
given in terms of functions of a single variabje. Thus, we must store Tmax in

134



an efficient form. At present Tmax has been approximated using bicubic splines,
but the approximation is costly in terms of storage and this method of storing
Tmax should be improved.

Figure 5.3.2 summarizes the computational requirements at the E-boundary
layer level.

Storage Computation
V*(E) (function of o*
one variable) (from (3.21)
(piecewise linear or (3.23))
approximation over h*
five intervals in E) (from (3.26))

La(E,h) (function of
two variables)+t

T _.(E,h) (function of
max two variables)

Figure 5.3.2.-Computation and Storage Requirements for E-Layer Solution.

5.3.3 Linearization Around the E-Boundary Layer Solution

As in Subsections 4.3.4 and 5.2.3, we can also linearize the boundary layer
control problem for 8, h and v around the nominal values for these variables
obtained in the E-boundary layer problem solution. As before, we obtain a linear,
guadratic cost criterion, time invariant, infinite time problem in the pertur-
bations of the variables B, h, vy, o, a from their optimal values computed in the
E-boundary Tlayer problem. Note that we assume that u retains the same value,
either 0 or 1, in the higher level control problems that it has in the E level
problem. The linear control problem has a simple control law of the form

BB,
(3.30) (g) = <2*(E)) + G(E)(h-h*(E)>

¥

where G is a 2x3 gain matrix which depends only on E. In this case the gain
matrix G is a function of the energy E and must be computed off-1ine and stored

+?1ternative1y, store the functions CL s0sC Of one variable and compute La from
3.28). a
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efficiently for on-board use. Note that storage of G amounts to the storage of
six functions of one variable. .Figuke 5.3.3 summarizes the computational re-
quirements for this linearization. o

Storage Calculation
G g,0
(a 2x3 array (by means of
of functions equation (3.30))

of one variable)

Figure 5.3.3.-Computation and Storage Requirements for Linearized
E-Layer Solution.

5.4 The Initial Boundary Layer Problem in 8
5.4.1 B~Boundary Layer Problem and Feedback Solution

By considering B on a faster time scale than x, y or E and on a slower time
scale than h or y, we obtain the following boundary layer dynamical system for B:

N , .
(L uTmaxs1na)s1nc

[=3

ag _
(4.1) t mV cosy

d
(4.2) 0 =V siny

(L+uT___sina)cosoc - mg cosy
max
(4.3) 0 v

together with the constraints (1.9) - (1.13). The cost criterion for this problem
is found to be

A v i
(4.4) J _Jg [1-—Véc05ycos(8-sc)+-xg g (uTmaXCOSa D)] dt

where AE is the optimal adjoint computed in (3.25). The initial condition is
given by B= B; but the final condition is B= B+ Again, as for the E-boundary
layer problem, we see that the SPT control law will fly the plane to the cruise
heading but will not yield a control which will give the final heading angle.

~ The optimal control Taw is obtained by minimizing or maximizing the expres-
sion
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[1-v¥ cosycos(8-8 )+-AE-—— (uT cosa - D) JmV cosY
c

max

(4.5) - : . :
(L+-uTmaxs1na)s1nc

with respect to the pseudocontrols h, y and the controls u, o, o such that the
inequality constraints of (1.9) - (1.13) and the equality constraints (4.2) and
(4.3) are satisfied. If B<B, then we minimize (4.5) and we must restrict our-
selves to pseudocontrol and contro] values which give a positive value for gs '
in (4.1). Likewise, if B> B, then we maximize (4.5) and we must restrict our-
selves to pseudocontrols and controls such that SE remains negative.

From the equality constraint (4.2) it is not hard to see that
(4.6) y=20

At this stage we will make the additional assumption that u takes on the same
value (namely 1 or 0) that it does in the E-boundary layer solution. In general,
we assume that if a control variable takes only a maximum or minimum value at a
slower level of the SPT hierarchy, then it maintains that value of the control

at the faster levels of the hierarchy. Thus, instead of writing uTmax we will
write T and assume that u is already determined and fixed by the E-boundary

layer solution.*
With these assumptions the expression (4.3) becomes

(4.7) 0 = (L+T sina)cosc -mg
Using (4.7) to simplify the denominator of (4.5), we obtain

[1-—¥Ecos(8—8c)4-kg %%-(T cosa - D)JV

(4.8) g tanc

Let us fix V and try to determine the optimum o and o for a given fixed V. To
do this we consider o a function of o determined by the expression (4.7). Taking

*A comparison with the exact energy state solution using both E and B as states
on the same time scale shows that this approximation is valid in all cases
except those where level flight cannot be maintained during a turn with zero
thrust (see Figure A5.1.9). This special case is handled quite easily in
practice by switching to full thrust if Tevel flight cannot be maintained other-
wise.
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the derivative of (4.8) with respect to a, we obtain

—AEV
(4.9

. v
(T s1na*—2nLaa) agcoto,

v v 2\ ¥ . -2 30
- (lf-v;cos(B-BC)i-AE EE{T cosa - Dy - nlL o ])'§ sin "o =~

3ag

o is determined from (4.7) to be

The derivative

- La+-T cosa
(4.10) £ = —————— coto
, o Lo+ T sina

If we_aséume.that o is small and that we can neglect terms higher than linear
tefms_in o, then we can determine the optimum o by setting the expression (4.9)
equal to_O. In this way, we obtain

1-¥ccos(s-s )+ A* — (T DO)

2 _

~-AEV

™
(T+L)

In (4.11) one takes the positive or negative root depending on whether B<<BC or
g > Bc' The corresponding value for a is determined from (4.7) using the value
for o from (4.11). Note that we must also test the possibility that o or a lie
on a constraint. One does this simply by setting O=E0 oy and solving (4.7) for
the corresponding o or by setting o= ag and solving (4.7) for o.” We then test
these values against the value of o determined by (4.11) and keep the one which
gives the smallest (if B~<BC) or greatest (if B> Bc) value of (4.8).

So far we have only determined the optimum o and o values in terms of a
fixed V. To obtain the optimum V, and thus solve the problem, we must resort to
numerical optimization off-1ine.  This optimization is made difficult by the
dependence of (4.8) on E and B-B.- Thus, the computed optimal velocity pseudo-
control: V¥ for the B-boundary layer is a function of the following form

(4.12)  VE = Vr(E,B-8)
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Note that V*(E,B-B_) = V*(E,-(B-8.)). :
The control 1aw for the B8- boundary layer is summarized in Figure 5 4., 1

5.4.2 Computat1ona1 Requirement for the Solution

The major computat1ona1 requirement at this level is the storage of
V*(E,B- B ). Having stored V*, we can compute o* from (4. 11) or from the con-
straint va]ues and then compute o* from the express1on_'

. g_cosc*
(4.13) o¥ = % T
a  max

We will also have to compute h* corresponding to V*(E,B-Bc) from (3.26), and we
need AE(E) to obtain o* from (4.11). 1If A is not stored, then it must be com-
puted in the E-boundary layer by means of equation (3.25). Note that in (3.25)
the expression V* is V*(E), the optimum V for the E boundary layer problem, and
not V*(E,B-BC). The computational requirements at the B-boundary layer level
are summarized in Figure 5.4.2.

Storage Calculation

V*(E,g-g,) (function of 't
two variables) (from (3.25))

D0 (fungtion of two o*
variables)+ (from (4.11))

n (function of one a*
variable) (from (4.13))

Figure 5.4.2

On-Line Computational Requirements for the B-Boundary Layer

In the next section we take an alternative, simpler approach to the B-
boundary layer solution discussed here. We use the work of Parsons (1972) to
obtain an exact solution to the reduced order problem in x,y,E,B. Then we ap-
proximate this exact solution with a suboptimal solution that essentially divides
the E-B plane into regions where zero or maximum thrust is used and all the |

t+Alternatively, store functions CD ,p,C of one variable and compute DO'
0
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Read ‘in g

N

Compute X*(E)
from (3.25)

Call V*(E,g-8.)

Calculate >0
from (4.11) or
from constraints
on o and a

Calculate o<0
from (4.11) or
from constraints
on g and o

Calculate g
from (4.7)

Figure 5.4.1.-g-Boundary Layer Algorithm.
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turning takes place either on the maximum turn rate (MTR) Tocus or on the maxi-
mum velocity constraint boundary. This'abproach involves more storage, but less
on-line computation. | R

Linearizaﬁion_around'the g-boundary layer solution for h and vy can be per-
formed in the same way as the 1inearizatfbn around the E-boundary layer (see
Subsection 5.3.3). o

5.5 E,B Boundary Layer Problem
5.5.1 Exact E,B Solution

Due to the difficulties of computing the B boundary layer feedback control
described in Section 5.4, we now suggest'hn alternative approach. The work of
Parsons (1972) provides us with an exact solution to the x,y,E,B problem in
which x, y, E and B are treated on the same time scale. Using this exact solu-
tion as a basis, we develop a suboptimal feedback law which can be computed on-
line and which is not far from optimal.

Assuming that h and y vary faster than x, y, E, 8 (which vary on the same
time scale), we obtain from (1.3) - (1.8) the dynamic equations

(5.1) %% = V cosBcosy
(5.2) 3= singcosy
dE _ V(uTmaXCOSa— D)
(5.3) Fri g
: L+uT __sina)sino
dg _ ( 7 max
(5.4) dt mV cosy

with the equality constraints

(5.5) 0

V siny

(L+ uTmaxs1 na)cosc - mg cosy.
mv .

(5.6):

o
]

from (5.5)-we have §F=O and from (5.6)uwégobtain
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:(5.7) g seco = L+uT . sina
Substituting this expression in (5.4), we have

(5.8) g%.= E_%éﬂg

Using the féct that o is small and La is much greater than Tmax’ we can find
an approximate expression for o from (5.7), namely

(5.9) o = mgLseCO
6]

Substituting this into (5.3) and approximating uTmaXCOSa by “Tmak’ we obtain

2
V(uTmax- DO- DLsec o)

mg

oo
cHm

(5.10)
where DL is given by

2
(5.11) b, = nma)”

Thus, the system (5.1) - (5.4) becomes

(5.12) dx . V cosB
dt
(5.13) I =y sing
dt
2
. V(uT___-D,-D, sec”o)
dE _ max O "L
(5.14) i g
dg . g tanc
(5.15) dt 7

There are inequality constraints on o, directly through (1.11) and indirectly
through (1.9) and (5.9).

- This optimal control problem (minimum time) must be solved numerically in
terms of a TPBVP derived from the first order necessary conditions. In Appen-
dix 5.1 we set up the TPBVP and discuss the optimization procedure. In the next
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section we describe the suboptimal approx1mat1on we have chosen for this solu-
tion.

5.5.2 Suboptimal Real-Time Approximation _
This subsection deals with the problem of computing in rea] time a subop-

timal minimum-time trajectory to 1ntercept a moving object, by approx1mat1ng

the work of Appendix 5.1. These sections have shown that opt1m1zat1on on- 11ne

is too time-consuming even for the energy- -state approx1mat1on and therefore not
feasible in real time. A sacrifice in accuracy is called for so that a near-
optimal solution may be generated on-line merely by looking up stored trajectories
and fitting together portions of them to match the particular boundary conditions
imposed upon the aircraft states. The program RLTIME has been written to:produce
such a near-optimal trajectory. Boundary layers can then be added to this
solution in order to smooth out the sudden changes in the states of the aircraft
introduced by the energy-state approximation. —

Stored Trajectories. Four trajectories are stored:
(1) Max-turn Jocus with 9022 < E< 29870 m. This locus has been defined in
Appendix 5.1--basically it requires 00, = 0gs 0.=12° and thrust is maintained

either at T=.ﬂnax or at T=0. The upper 1imit on E was chosen arbitrarily while
the Tower 1imit is approximately the Lufbery Circle Point value (Parsons (1972)).
This is the classical aerial combat situation and is a steady-state turning

rate condition. If the airplane were to fly along this locus its energy would
decrease while following a spiral-shaped trajectory in three-dimension space.

The following equations were integrated to obtain the Tocus with T'==Tmax

(5. 16) dg _ tanomgw
) dE V2 (T -Dn-D seczo )
MTY'max ~“0 ~L m
(5.17) gt - ! \
VMT(Tmax"DO"DLsec,Qh)
(5.18) $¥- W C°;8 5
(Tmax-DO- | sec cm)
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(5.19) %x_= W sing .
E (T DO- DLsec om)

max o
EquationS (5.16) -(5;19) have been derived from the equations of motion of the
airplane model (5.12) - (5.15). Note that for 9022 < E < 29870 m, Tmax-<DRAG and
so for c==+om, B increases as energy decreases. VMT is the velocity necessary
to remain on the locus and is given by the equation:

o

L
- W 2
(5.20) VMT (%psCL ascosohl)

which merely states that LIFT=W seco at maximum bank angle and angle-of-attack,
i.e., setting Og = O

In order that the x and y values obtained by integration of equations (5.18)
and (5.19) may be translated into the inertial coordinate system, consicder the

following:
ds _
FE° f(E) from (5.16), hence
Ey
(5.21)  lE;) - B(Eg) = Byr(E) - yr(Eg) = [ F(E)
Eo
where the subscript MT refers to the max-turn locus coordinate system and the
unsubscripted variables refer to the inertial coordinate system. (See Figure
5.5.1.) Equation (5.18) may now be rewritten as:

W cos[Byr(E) + (B(Eg) - Byp(Eq))]

dx
5.22 o =
(5:22) g (T-D)
-W COSBMT(E)
(5.23) = COS(B(EO) = BMT(EO)) T-D
-W sinB,(E)
- sin(8(Ey) - BMT(EO))[ T_ET }
Hence,
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max-turn locus -
(29600 < E< 98000 ft)

v
y

max-turn locus coordinate system

>~
/3"

Note aircraft trajectory
B(E) - B(E,) = By (E)-Byr(Eg) &

aircraft coordinate system

Figure 5.5.1.-Max-Turn Locus Coordinate System/Aircraft Coordinate System.
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(5.24) - x(E) - X(Eo) = COS(B(Eo) —BMT(EO))[XMT(E) -XMT(EO)] _

and similarly:
(5.25)  y(E) - ¥(Eg) = cos(B(Ey) - Byr(Eg)) [ypyp(E) - vy (Ep)]

+ sin(B(Eg) = Byr(Eg)) Diyyr(E) = xyr(Eg) ]

(2) Max-turn locus with 8992<E< 1524 m. Here the lower limit is arbitrary
while the upper 1imit is again approximately the Lufbery Circle Point value.
To obtain the turning in the same sense as in (1) with o+ve, it is necessary
to move up the locus with increasing energy since now Tmax:»DRAG. Equations
(5.16) - (5.19) were integrated and again equations (5.24) and (5.25) give the
horizontal plane distances in the inertial frame.

(3) The AB=0, minimum-time energy path to the cruise arc. This is a
trajectory belonging to the family of trajectories presented as initial turns
tc the cruise arc in Appendix 5.1. This particular one allows no turning and is
really just the vertical plane solution of the problem of reaching the cruise

arc in minimum time.
(4) The AB=0 chatter path off the cruise arc. Appendix 5.1 presents the
theory supporting this trajectory, which requires zero thrust and is a maximum

deceleration arc.

Real-Time Approximations. As stated earlier, a real-time solution requires
minimum computation on-Tine and should involve mainly looking up of stored tra-
jectories and fitting together portions of them so as to satisfy boundary con-
ditions. One possible approximation for real-time determination of trajectories
is to turn only on the max-turn locus and at other times to follow either the
delta-beta =0 path to the cruise arc or the chatter path off the cruise arc.
Hence, for initial turns to the cruise arc, the approximate solution requires
a zoom to the max-turn locus from the initial conditions followed by turning
on .the locus and then a zoom to the delta-beta=0 path to the cruise arc.

As presented in Appendix 5.1, Figure A5.1.9 shows the optimal trajectories
in the beta-energy plane for final turns from the cruise arc. It is possible
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to make approximations in varying degrees to produce near-optimal trajectories
to replace the optimal ones, in real time. Using the same approximation as for
the initial turns, all the final turning is also on the locus. Thus the real-
time approximation requires bank angle chatter on getting off the cruise arc
followed by a zoom to the max-turn Tocus. After turning on the locus a zoom at
constant energy to the final conditions completes the trajectory. This approxi-
mation is indicated by the dotted lines in Figure 5.5.2 where the thrust-switch

locus is also ignored: T==Tm all the way once chatter 1is over.

Numerical results have bg:n obtained for the approximation described above.
Probably, a better approximation would be as in Figure 5.5.3 where a piecewise
linear fit is made for the thrust-switch locus and the zoom-climb locus and the
trajectory allows turning before reaching the max-turn locus by about 60°. The
rate of turning may be approximated as constant by the almost straight line tra-
Jjectories, or alternatively a crude g%-integration may be performed on-line.

Switching the thrust would require storage of the max~turn locus with thrust=0.

Formulation of the Problem. We assume for simplicity that the target is

moving in a straight line at constant velocity. For interception of the target,
we require pursuer trajectory time (t1)= target time to interception point (tf).
In addition t) =ty must be the minimum possible time. Hence an iterative loop
is necessary to match up tl and tf for minimum-time interception. With a value
for tf, the position of the target in three-dimensional space may be obtained
and the problem may be restated as: given initial and final energies, altitude,
velocity, and horizontal plane positions, a minimum-time trajectory is required
so that the above boundary conditions are met.

Figure 5.5.4 shows how the min-time path is split up among the stored tra-
jectories and the cruise arc. The heading angle, B8, is measured clockwise from
the x-axis. Two constraints have to be observed. Restricting ourselves for
simplicity to the case of clockwise turns, (1) the relative angle between the
initial and final points (BS) is assumed greater than Bg> the initial heading
angle; (2) the total turning angle is assumed less than 180°

In general terms the algorithm is:

(1) Estimate t, the interception time
(2) compute final conditions for interceptor aircraft
(3) from initial altitude, execute a velocity (or altitude) zoom (constant
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Figure 5.5.2 Change in Heading for Variable-Altitude
Final Turns from Cruise Arc
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Figure 5.5.3 Change in Heading for Variable-Altitude
Final Turns from Cruise Arc



Ui AR=0 chatter
patﬁ) |

Cri;jjtt,,/////ﬁ%ﬁ

AR=0 path to
cruise arc

Figure 5.5.4.-Geometry for Determining Initial Heading Angle and
Interception Time tf.
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energy) to the max-turn locus
(4) determine cruise heading Be (see equation (5.28) below)
(5) turn along the max-turn locus until heading= Bc
(6) zoom to the AB=0, min-time E-path to cruise arc
(7) follow AB=0, min-time E-path to cruise arc
(8) stay on the cruise arc for distance R¢
(9) follow AB=0 chatter path off the cruise arc for distance R,
(10) zoom dive or climb to max-turn locus
(11) follow max-turn locus until heading angle = B¢
(12) zoom dive or climb to required final altitude and velocity
(13) compute trajectory time and update te using Newton-type step
(14) go to (2) if accuracy on te not met.
Figure 5.5.8 introduces relationships between the various distances involved:

(5.26) Yty (R1+R2+Rc)s1'n6C =

[
<

—h
<

[

i

(5.27) Xp t Xo + (R1+R2+Rc)cosBc

which give the cruise heading as:

‘yf_‘yO'_yl-‘yZ
Xf_XO-xl_XZ

(5.28) tang, =

and since X1s ¥1» Xos ¥, are functions of Bc’ equation (5.28) has to be solved
iteratively, for example by using a Newton method. RC is then obtained from
equation (5.26) or (5.27).

5.5.3 Computational Requirements

The two important quantities being calculated in this algorithm are Bc and
tf, both by iterative methods involving just a few iterations each. We consider
here computational requirements for calculation of each of the above two quan-
tities which are stfficient for the second (more accurate) real-time approxima-
tion mentioned in the last section. Most of the trajectories to be stored may
be approximated by piecewise linear fits to keep storage requirements down.
Figure 5.5.5 summarizes the computational requirements.

In the example case presented and considered in Chapter 6, 3c==38.3° while
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/

/ Storage Computatidn
T=0 ax(8,E) B,
1'=Tmax AY(B,E) using

equation (5.28)

on max-turn locus Lo .
in iterative loop

thrust switch locus (B,E)

B te

jteratively using
t1= sum of times on

T=0 AL(EY, h(E) separate portions of
= ’ trajectory; t_ time
T=T7 c
max
on max-turn locus R

. = C
on cruise= £00.2

thrust switch locus (B,E)

zoom climb locus (B8,E)

B-E Tines on max-vel
constraint (see Figure
5.5.2)

h(E), at(E), ax(E) on
Ag=0 path to cruise

h(E), at(E), ax(E) on
AR =0 chatter line
(max-vel constraint)

Figure 5.5.5.-Storage and Computation Requirements for E,B Layer.
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the relative angle between the initial and final points was 38.65°. Hence, the
Be calculation may be omitted to save computation time with 1ittle loss in
accuracy. |

5.6 Initial Boundary Layer Problem in h

5.6.1 h-Boundary Layer Problem and Feedback Solution

As we discussed previously in Sections 5.4 and 5.5, we have separated the
vertical plane part of the trajectory from the horizontal turn part. Thus, in
considering the h-boundary layer we need only look at the vertical plane case
with =0 and 8= Bee Moreover, we assume that any controls which take their
value on a constraint in slower levels retain the constraint value at faster
levels.* Consequently, we assume that T is determined (u=0 if E> E. and u=1
if E< Ec)' With these assumptions the dynamical system for the h boundary layer
becomes

(6.1) I = v siny
with the equality constraint

(6.2) 0= (L+T sina) -mg cosy

and the cost criterion
(6.3) J = w[l_y_ cos +A*—V—(T cosa~-D)] dt
' 0 V. YT mg

where AE is the optimal adjoint computed in (3.25). The initial condition is
h= hi and the final condition is h=h*(E), where h* is determined from (3.26).

The optimal control law is obtained by minimizing or maximizing the expres-
sion

*More general solutions without these assumptions are given in the appendices.
In particular, it is shown that, for turning maneuvers with o= 0, the results
of Sections 5.6 and 5.7 are extended quite easily.
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v v 2
60) [I-VCCOSy+ XE g (T cosa - DO-nLaa Y]
6.4 - '

V siny

with fésbect to the pseudocontrol vy and the control o such that the equality
constraint (6.2) is satisfied. If h<h*(E), then we minimize (6.4) and we must
restrict ourselves to y>0. If h>h*(E), then we maximize (6.4) and we must
restrict ourselves to y<0. Note that the expression (6.4) is an odd function
of v and that the expression (6.2) is an even function of y. It follows that
the minimum solution y> 0 is the negative of the maximum solution y<O0 and that
a is the same in both cases. Thus, we restrict our attention to the case when
y > 0.

To determine the solution y>0 that minimizes the expression (6.4), define
the Lagrangian function &£ as

v ) 2
[1-5 CCOSY+'A mg (T cosa =Dy =nl a%)] A[L_ o+ T sina-mg cosyl]
(6.5) Z = y 2
V siny V siny
Sy . N 0F_dL_
where A is an undetermined Lagrange multiplier. Setting -—--Eru-o we obtain
the relations
= (Y - x ¥ D -l -

(6.6) 0 = <Vc+ Xmg) (1+>\E g (T cosa Dg - @ nLa) + A(Laa+T sina))cosy

v .
(6.7) 0= -)\’E ng (T sino+ anaa) + A(La+T cosa)

Assuming that o is small enough to neglect in (6.6), (6.7),* we find that xmg in
(6.6) is negligible and we obtain the following expression for cosy

(6.8) < = COSY

We solve (6.8) for cosy and then obtain a from (6.2). Note that for values of h

*This approximation is quite good for T==Tmax, but needs refinement for T=0 case.
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close to h*, the expression (6.8) may exceed 1 slightly (by .02) due to the
absence of the nonzero o in the denominator. In this case we can either set
v*=0, since it will be very close to 0, or we can use a method of success1ve _
approximation to obta1n a better approximation--for examp\e, solve (6. .2) with
v=0 and use this approx1mat1on of o in (6.6), (6.7) to obta1n a better approx1-
mation of y. 1In Append1x 5.2 we have carried out a more carefu1 ana]ys1s of -
the solution of equations (6.2), (6 6), (6.7) using perturbation analySIS. F1g-
ure 5.6.1 summérizes the control law computat1ohs for the h-boundary layer. |
' The adjoint Aﬁ for the h-boundary'layer is obtained ffomISOIVing

(6.9) 0= ;-%c cosy + A% "Y—g (T cosa - Dy - nL %) + ARV siny

for xﬁ, where vy and o take their optimum values for the h-boundary layer problem.
5.6.2 Computational Regquirements

The computational requirements at this stage are rather minimal. A1l storage
requirements have been accounted for on slower levels. Likewise, the adjoint
A% has already been calculated. Hence, the only computational requirement is to

E
calculate y from (6.8) and o from (6.2). Figure 5.6.2 summarizes these minor

requirements.

5.7 Initial Boundary Layer Problem in y
5.7.1 y-Boundary Layer Problem and Feedback Solution

We make the same assumptions for this problem that we did for the h-boundary
layer. In particular, we assume that T is fixed, and =0 and B= Bc. The dynamic
system for the y-boundary layer becomes

(7.1) %¥-= Lo+T sina - mg cosy

with the cost criterion

I v .
(7.2) J —j; [l-vcc05y+ AR g (T cosa- D) +>\ﬁv siny] dt
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Read in h

Compute v = Yo from

(6.8) or by successive
approximation

Compute o from
(6.2) with Y=Y0

h < h*(E) h > h*(E)

Y* =Y, ,é h 2 h*(E) v*= -1,

Figure 5.6.1.-h-Layer SPT Algorithm.

Storage Calculation
None v*
(accounted for (from (6.8))

at slower levels)
U.*

(from (6.2))

Figure 5.6.2.-Storage and Computation Requirements for h-lLayer.
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The optimal control law is obtained by minimizing or maximizing the ex-
pression

-4 cosy3g 2L (T cosa- 0y -k e?) + AV siny
(7.3) S

La°‘+ T sina- mg cosy

with respect to the control o. If vy <y*(E,h), then we minimize (7.3) and we
must restrict ourselves to o such that Laai-T sina-mg cosy >0. If yv.>vy*(E,h),
then we must maximize (7.3) and we must restrict ourselves to a such that
Lo+ T sina-mg cosy < 0.

Taking the derivative of (7.3) gives us

(7.4)  {-(La+T sina-mg cosy) (A o [T sina+2nL al)

v v . . -
(L, *+T COSQ)(l-VEcosYi-AE mg (T c05a-D)4-AﬁV S1ny)}(Laa*-T sina - mg cosy) 2

When either E>-EC and y <+vy* or when E<Ec and y>y*, the expression (7.4) is
negative. Hence, in these cases the expression (7.3) is decreasing in a. When
E<E. and v>y*, we want to maximize (7.3) so we choose o.=0. When E>E. and
y<y*, we want to minimize (7.3) so we choose o= 0.
To solve for a in the other cases, we set (7.4) equal to 0 and we neglect

terms in a higher than Tinear.* Define % by

o = g cosy
0 La+T

(7.5)
Then setting (7.4) equal to 0 gives the following quadratic equation,

(7.6) ol - aga + k = 0

where k is given by

*In Appendix 5.3 we have considered a higher order approximation.
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v v .
1 -Vccosyf AE mg (T- DO) + Ai']‘V siny

v
AE ﬁ'la (T"‘ ZnLCt)‘

(7.9) a =
when E>E.. Figure 5.7.1 summarizes the feedback law in this case.

5.7.2 Computational Requirement

As for the h-boundary layer, the computational requirements at this stage
are rather minimal. Al1l storage requirements have been accounted for on slower
levels. Likewise, the adjoint AE has already been calculated. The adjoint Aﬁ
must be calculated from (6.9) at this level. Finally, o is calculated from
(7.8) or (7.9). The computational requirements are summarized in Figure 5.7.2.

Storage Calculation
None (all Aﬁ
accounted for
on slower (from (6.9))
levels) %
(from (7.5))
k

(from (7.7))

(frog (7.8)
or (7.9))

Figure 5.7.2.-Storage and Computation Requirements for y-Layer.

A pictorial representation of the control problem is given in Figure 5.7.3.
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Read in E,vy

compute o
from (7.9)

compute o
from (7.8)

Figure 5.7.1

Feedback Control Law a(y-v*) in the y-Boundary Layer
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v-trajectories viewed on the

fast time scale T
\ / |
Y*
/ q

y-trajectories
viewed on the’
slow time

ccale t ~
SCaile €

Surface corresponding
to the optimal y* time

/ J / history determined from
/// ///' //’ the h-boundary layer.
d 4 P o 1s used to control
/( T - y-state to this
) surface.
t

Figure 5.7.3
v-Boundary Layer Control
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The y-trajectories are shown on two time scales, t and T=t/e. The t time scale
corresponds to events in the h-boundary layer and the change in v on this time
scale appears instantaneous. Case I shows a trajectory for y*=0 and vy > v*,
E<E.. From Figure 5.7.1, the optimal a=0 till vy=v* and o = [equation (7.8)]
when y<y*. The asymptotic value of o is determined from the o-value on the
h-boundary layer, namely d==T£%—. Notice that a slight undershoot in y would

ol

occur and some form of anticipatory action may be used to reduce this undershoot
and consequent chatter. Case II corresponds to an asymptotic value y=y*,

v(t=0) <y* and E¥>ECL For this case, Figure 5.7.1 shows that the optimal

value is ag till y(t) >v* and o =[equation (7.9)] for y<vy*. In practice, it
would be better to set o to its asymptotic value once jy-y*l is less than a
small threshold value. An alternative would be to switch to linearized control
once |y-y*| decreases below a prespecified value. A similar logic should also
be used for other boundary layers.
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APPENDIX 5.1 -
DERIVATION OF THE EXACT E,B SOLUTION

A5.1.1 Introduction »
As we saw in Subsection 5.5.1 of Chapter 5, the equations of motion for the
X,¥,E,B8 system (referred to as the energy-state approximation in Parsons (1972))°

are

) V(T-Do-DLseczo)

(1.1) E = W
> . g tanc
(1.2) 8 v
(1.3) x = V cosB
(1.4) y = V sing

E, B, x and y are the four states and T, V and o are the three controls. The
three states V, h and vy of the original dynamic equations have been reduced to
the single state E and V or h becomes a control variable. Essentially, the
assumption introduced here is that V and h can be changed instantaneously at
constant E by zoom climbs or zoom dives. For consistency with equations (1.3)
and (1.4) these maneuvers also occur without changes in x or y. Section 5.6 of
Chapter 5 presents the concept of boundary layer corrections to smooth out zoom
climbs or dives as in Figure A5.1.1.

A

corrected
solution zoom dive at
%,-— constant E

tf &~ energy-state solution with
ZOOm maneuvers

—>
M

Figure A5.1.1.-Concept of Boundary Layer Corrections.
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The major assumptions implied in the equations of motion (1.1) to (1.4)
are as follows: (a) change of mass is negligible, (b) cosine of angle-of-attack
is approximately one, (c) the normal component of thrust is negligible compared
to lift.

The boundary conditions that go with the formulation of (1.1) through (1.4)
are for a turn to a point: :

(1.5) E(0) = Ey E(te) = Eg

(1.6)  B(0) = g, | B(t) = 8

(1.7) x(0) = xq x(tg) = xg¢

(1.8) ¥(0) =y, y(te) = yg

and for a turn to a line:

(1.9) B(tf) = /2 (rotate x-axis so that it is

normal to objective line)
(1.10) x(tf) = Xg

(1.11) y(te) = free

The constraints on the three controls are:

(1.12) 0= Tmin < Tx< Tmax(h’M)

(1.13) la] < us(V,E,as)
(1.14) VsV

(1.15) lo| < 9

The minimum or idle thrust is assumed to be zero. O is the bank angle
which yields the stall angle-of-attack 0g = 12° at an existing energy and velocity

from the equation:

(1.16) a. = cos” ! [ W ]
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The Vmax constraint combines an approximate maximum air speed limit, a maximum
Mach number contraint, and a positive altitude constraint. Figure A5.1.2 shows
the form of this constraint. The maximum bank angle constraint 9 is a maximum
normal load constraint:

(1.17) normal load in g's = —= = tano
assumed to be 4. Thu O = 76°.

Vin

The auxiliary equations that relate all the variables present in the equa-
tions of motion (1.1) to (1.4) are

2
_ v
(1.18) h=E- 79

(1.19) o =Y2eCo
o

by using the assumptions cosy=1 and y=0,
(1.20) L=l
(1.21) D = D, +D, sec’o

' 0 L

(1.22) q & nov
(1.23) L @ ¢, as

(¢
A
(1.24) 1, 4 €y, S
. 0
2
8 Wl
(1.25) b ¢ -

and the following constants:

2

S =49.239m

(1.26) 5
1.5569 x 10” N

W
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Figure A5._1.,2.—Vmax Constraint as a Function of Energy-Height.



The example aircraft being used in this work is an early version of the Ef4f/
Sonic speed c(h), density p(h), 1ift coefficient slope CL (M), zero 1ift drag
a .

coefficient CD (M), aerodynamic efficiency factor n(M) and maximum thrust
0

Tmax(h’M) are tabulated functions. The numerical treatment of this data so as
to provide continuous values by construction of spline fits was described in

Chapter 2 and so will not be discussed further here.

A5.1.2 First-Order Necessary Conditions
For this problem the Hamiltonian may be written as

AV
- E -n - 2 tano .
(1.27) H= 1+ (T Do - by sec o)*-ABg V +-AXV,cosB*-AyV sinB

W

W seco 2

2
(T =T ) P (G -ag) +ug(V -V )+, (tanc - tan®c, )
. o
where
By = 0 if 0<T<Tmax
uy 2 0 if T=0o0r T=T ..
By = 0 if |} <oy
Ho =2 0 if o] =0
(1.28) 2 s
Hy = 0 if V< Vmax
Uz = 0 if V= Vmax
Hy = 0 if |c[«<om
y 2 0 if lo] =0,
Euler-Lagrange Equations
s oM
(1.29) Ap = -3F
A
_ e (20 + 0 cecalt u.T ®Tnax + . W seco oLy + 3Vimax
W \sE = oE 9T 1’ BE M2 2 3 T V33
o
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oH

(1;39?. 8 = “38

>0
|

=_AXV sing - AyV COSR

oH

(1.31)“' %&{= ~ ='q-
3 =_-a—lﬂ|-=
(1.32) Ay 5y 0

Hence both AX and Ay are constant.

Optimality Conditions

oH _
(1.33) 57 =0
AEV
= (2T Ty
aH _
(1.34) 35 - 0
A 2D, Vi tanc
_ 2 19% L'E W seco
= sec 0'[ vV " W + u2-~7;;—— + 2u4tano]
A oD oD
H.g-_E(1_.p.- 2 _ 0 _ L ocnr2 v _ tano
(1.35) 5V 0= (T Do D sec’c - V 57 v 7~ sec o) Asg —;7— + A,cosB
oT ol
: max _ W seco "o
+ Ays1n8 - ulT EY 2 ) ) > BV + Mg
o

Transversality Condition

(1.36)  H(tg) = 0

Also since the Hamiltonian is implicit in the independent variable, timé,

we have

(1.37)  H(t) = H(tg) = 0
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Equations (1.1) through (1.8), (1.28) through (1.35) and (1.37) are the
first-order necessary conditions for a minimum-time turn.

A5.1.3 Legendre-Ciebsch Necessary Conditions for a Minimum (2r3—c-i Order Conditions)
The Legendre-Clebsch necessary condition for a minimum is

- ' 1

Hrp  Hop  Hyp
(1.38)  H,, = [Hy, Hy Hy | =20
H H H
v W
i oV i

if det Huu==0, then the time optimal trajectory is a singular arc.
The components of Huu have the following form:.

(1.39) Hep = 214

l
x
H
o

(1-40) HO_T -

(1.41)  Hyp = Hpy = - w57 —

2D, VA 3
_ 4 L™ E W cos o
(1.42) Hoo = sec o [ i * U, E;——~+ 2u4]
BDL
2D, A tang —— VA -tanc oL .
_ 2 92 L E YA & sino
a
2 2
2\,g tanoc A aD aD 3°D o D
(1.88)  Hyy = —P5— - Tf—[z o+ 2w sec?o + ¥ —0 + ¥ —E sec 0]
v v oV
2 2 2
- T ® Tmax +u W _seco j;_(aLa) 9 La}
1 avz 2 L 2 La 3V 3V2

A5.1.4 Existence of a Maximum Mach Number Straight Cruise Arc
Parsons (1972) gives a full justification for the existence of a singular
arc with straight flight using intermediate thrust and maximum Mach number using
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equations (1.29) through (1.35) and (1.38) through (1.44). We will only pre-
sent the characteristics of this cruise arc here. T
The cruise energy and velocity are given by the relation

av

(1.45) —T@X g

ok

Since the maximum velocity constraint is of the form shown in Figure A5.1.2,
the energy at which (1.45) is satisfied is unspecified at or above 29.949 Km.
As it is expected that initial and final energies will be below the minimum
cruise energy, this value is chosen as the cruise energy. Hence we have

(1.46)  E_ = min[E] = 2.9949 x 10% m

8VmaX 0

3

_ G - - -1
(1.47)  v* =0 _ =V E)l 590.2 ms
maX =0

(1.48) o* =0
(1.49) T+ =T =0,V .E) + D (V  .E)
(1.50)  h,_ = 1.2192 x 10% m

Equations (1.46) to (1.50) characterize the cruise arc and so at present
we only consider a three-dimensional turn to a poinf or onto a line which is
far enough away from the starting point so that a cruise arc is reached during
the flight. The length of the cruise arc is determined so that the horizontal
plane boundary conditions are satisfied. Thus, the initial turn to cruise arc
and the final turn from the cruise arc can be determined separately. The solu-
tion therefore consists of three parts: (1) initial turn to cruise arc, (2)
flight along cruise arc, (3) final turn to required point from cruise arc.

A5.1.5 Formulation of the Initial Turn
As the coordinate system can be rotated so that the cruise heading, B = 0°,
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we only consider an initial turn onto the line y=0 within the cruise arc as in-
Figure A5.1.3. | o
In order to facilitate the formulation of the initial turn we assume that
the turn contains a constant radius turn1ng segment with T*-Tmax, E==Ec and
V=V -sas.in. Figure A5.1.4.

max
The cost funct1on, ‘J, for minimum t1me to x=0 is

-X R . sing, R . B t
(1.51)  min {ja =1 4 min” 71 _ min 1-+‘/; Lit

V "~

Tso,V max vmax Vinax 0
(- - U D W
time in cruise time in time in

turn at turn at
V= vmax V< Vmax

subject to the equations of motion (1.1) to (1.4), and the boundary conditions
are now

(1.52) E(to) = E(tl) E.

(1.53) B(to) = Bp<0 B(tl) By» free parameter

(1.54) | x(to) Xg x(tl) = RminSinsl’ free (strictly,

x(tl) = Rminsineli-xf, but without loss

of generality xf==0.)

(1.55) y(to) Yo y(tl) = Rmin(l-cossl), free

(1.54) and (1.55) are obtained from the geometry of the problem.

A5.1.6 Determination of the Optimal Initial Turn Trajectory

The variational Hamiltonian is the same as equation (1.27) and first- order
necessary conditions and first integral as in equations (1.29) to (1.37). The
following terminal adjoints may be obtained from (1.51):

(1.56) iAE(tl) = unknown
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V=Vmax o
E=Ec R
1 - : .
O—"-_ N ! AN
O<Tc<Tma
N
.Ef
1 initial cruise \[V final
E0 turn arc turn
y
Figure A5.1.3.-Break-up of Trajectory: Initial Turn, Cruise Arc,
- Final Turn. :
. ]
o*—cc
E=E§
* =
v Vmax
*=
T Tmax "
L - Ec ve={
x% t O<Tc<Tmax ? S x
_ _ E } _ T 7
T*—? or T*—TmaX C | E—Ec
k=
V*<Vmax\\\‘\t§ =0
Rm1'n
Xnst
0 3ﬁ BO
Eg v
y

Figure A5.1.4.-Constant Radius Turning Segment Within Initial Turn.. - '
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pury
=
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[oony
1
O
(o]
w
™
—
~

(1.57)  2glty)

(1.58) A (ty) :

U]
o

(1.59) Ay(tl)

With the results (1.58) and (1.59), equation (1.30) becomes

_ -V sing
B A
Vmax

(1.60) A

It is intended to integrate the state and adjoint equations backwards from
time tl, hence determination of AE(tl) together with the values of the controls
at t1 will parameterize the whole problem in terms of 81. The value of t1 is
also in terms of By

o

(1.61) ty =

max

m =
n 1]
m_ =<

Controls at Time t1
On the constant radius segment, bank angle for constant energy will be

T -D,-D L
(1.62) o, = tan” | X o 1 |~ = s9.2°
L v="1
max
E=EC
since E=0
~ ~ 2
v v
- _max - - _Mmax - 4
(1.63) Rmin 3 V==V E_EEEEZ 2.1195x 10" m
| max
E= EC
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4

T (V N

(1.64) T max

max’Ec) = 10.45x 10

(1.65) v 1

Vmax = 590.2 ms

Determination of AEgyl)

Using (1.34) when |o] <og and [of <o, S0 that u;=y,=0 and o=0, =optimal
unconstrained bank angle,

ngB
(1.66) AE =
2DLV tanou
for continuity,
(1.67) tanoul _ = tano,
t
(1.68) V‘t - = Vmax

Using (1.57), (1.63), (1.66) to (1.68) we have

"W(l - COSBI)

B 2
ZDLVmaxtan Gc

(1.69) Ap(ty)

Thus the initial turn problem has only the single parameter Bl to be selected
to satisfy a given E0 at B or vice versa.

Choice of Optimal Controls Along Trajectory
The optimal bank angle is obtained from

(1.70) o* = min [ou,os,om]

where % is given by equation (1.17) and o by equation (1.16). The unconstrained
optimal bank angle, G, is obtained from:

WgA

(1.71) o, = tan™1 [————{;——]
ZDLV-AE
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Equations (1.28) and (1.33) require that:

. _ . AV
. . - "E .
(1.72) Ac >0 if T=0 since uy;, = 7m——=0
E s Tl MWWy
(1,73) )‘E =0 if 0<T<Tmax
) . -AEV
(1.74) Ap <0 if T=T . since yu; = WT;;;'Z 0

Hence an observation of the sign of AE determines the optimal thrust. A
more complete derivation of o* and T* appears in Parsons (1972).

The optimal velocity could be obtained from the remaining optimality con-
dition equatjon (1.35) with equation (1.28). This requires a one-dimensional
search.in V at -constant state ffom the Vinax constraint to a value around the
stall velocity. However, to eliminate the need to calculate the partial deriva-
tives of equation (1.35) in the search, the optimum velocity was obtained by
minimizing the variable portion of the Hamiltonian:

_ . AN 2
(1.75) V¥ = arg min W (T* - Do - Dy sec o*) + Ay :

[AEW g tanc* _ V coso*
v

max ] constant

LM<V<Vmax
" state

where VLM is the Tower Timit of the search.

Ap_Equations
Using Ax=- 1 and Ay==0 and equations (1.33) to (1.35) to get the u(t),

~

vmax

equation (1.29) for iE becomes:

A <3D0 D, aTmaX)

(1.76) A = \BE T3 seco - &3

when |o| <o, and V<V
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AW [ 3D aD oT ' :
(1.77) A = E( 04 L gocly - max) _

E- W\ ' 83
oV aT aD .
+ X {COSB TE[ (T+V V'"ax (D +V avo)
Vmax -

oD A,g tano.
— LY.l B
—(DL+V3V )sec o]+ 'Vz }

when |o| <o_ and V=V

s max
. AV [aD, aD aT aL_[ 2D, Va gA, .
(1.78) Ap = 15 (BEO * BEL seczo - gaEmax) * ﬁg(_—l:_g VL singcosc) :
WLacos o o .
when |o| =o <o and ¥<V .
AV faD, oD T v ”
s E 0 L 2 max max CosB
(1.79) A = (aE *3F sec o - & ) * 3E {‘A,
max -
oD oD A,g tanc
_ Ae Tnax ) )_ ( LYo 2 8
W [ (T+V ) (D +V W DL+V3V seco]+———-—V2
Loy ( 20 g g ) oL, [0 g :
aV WLacoszo VLasmccoso aE NLacoszo VLasmcc?osg _
when |o| =0, and V=V_
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ol
) 3k cosB A_E (T+V max) <D +V )
sl |V W
o max
EYY
3D A_g tanc
B S\ Yy 8
- (DLi-V 5V )sec o] + V2
when |o] =0g=0p and V<V .. and where £=1 if T=T . and £=0 if T=0.

This completes the formulation of the initial turn problem with the single
parameter 81. A choice of Bl specifies all the initial conditions for the back-

ward integration of the E, B, X, V, iE and X, equations to produce an optimal

B
trajectory to satisfy a given E0 at 60 or vice versa.

A5.1.7 Alternate Single Parameter Formulation
The formulation of Section A5.1.6 shows that c==oc==59.2° at t= tl. The

optimum bank angle is almost zero until t is very close to tl, thus producing an
-6

extremely sharp spike in o. This is very pronounced for |81|< 1°x 10 As 1in
Figure A5.1.5, since digital computations are being used, o is held constant
over each integration step, thus broadening this spike in bank angle. To
attempt to follow the sharp change in o more accurately, the step length must

be reduced considerably, resulting in increased computation time. Thus, to
avoid these numerical difficulties, an alternate single parameter formulation
may be obtained using XB(l) as the parameter and integrating backwards from t=1
instead of t=t;. A review of the results for 0<t<1 for small |8;] revealed -
that AE’ E and x are all independent of AB and B. Hence the values of AE(l),
E(1), and x(1) for |81!= 107% can be used as initial values to begin integration

at t=1 for trajectories given by |61|< 10'6. These values are:

(1.81)  ag(1) = S1.52x107° mLs

(1.82)  E(1) = 2.9907 x10% m
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integration E . ' A
step ! f -—constant velocit
—>] <“ , ¥ 6 turn Y

T
N
i I™—_computer bank angle
% held constant over
i
I
|

one integration step

from t=tl

L——actual bank angle

t | ~
t; 0

Figure A5.1.5.-Numerical Problems in Following Spike in Bank Angle.

(1.83) x(1) = -0.0278 xR .. m

The controls at t=1 can be taken as

~

(1.84) V*(1) = Vmax

1}
o

(1.85) o*(1)
(1.86) T*(1)

Tmax

Further, a study of the solution near t= t1 from Parsons (1972) gives an

approximate value for (1) as:
(1.87) g(1) = 0.53 KB(I)

Thus we now have the initial turn problem parameterized by AB(I) to be

selected to satisfy Ej at B or vice versa.
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A5.1.8  Numerical Results for Initial Arc

Several. optimal trajectories were obtained by variation of the parameter Bl
or X, (1) Parsons (1972) shows that the complete set of initial .conditions is
coVered by the range of parameter values O<B1 <-2.15°. For values of |81| above

about 10'3, the entire initial turn is on the maximum velocity constraint. For
181 < 107° the AB(l) formulation was used and we present here the characteristics

17 which displays

of the optimal trajectory obtained for a choice of AB(1)= -10
the zoom dives that reflect the energy-state approximation used in the solution.

Figure A5.1.6 shows the flowchart for obtaining an optimal trajectory back-
wards in time from the cruise arc. Box A and the dotted feedback loop indicate
logic to choose the correct value of the parameter 81 or XB(l) to arrive at
specified initial conditions EO and BO. This logic would interpolate between
the family of By or AB(l) trajectories (flooding method). This may involve a
few iterations on those parts of the trajectory where B changes.

For the example trajectory chosen (AB(l)= -10_17), the stopping criterion
used was to test if the lc|=<qn=<ss locus had been reached. This is the point
where the angle-of-attack, o, and the bank angle are at their maximum values
simultaneously. Figures A5.1.11 ~ A5.1.23 give the time-histories for all the
states and controls and for some of the derived variables.* The changes in
velocity and altitude appear in Figures A5.1.13 and A5.1.14 where the zoom dives
clearly indicate the instantaneous tradeoff between height and velocity. Figure
A5.1.15 reveals that the whole initial turn consisting of 104° is comp]eted
within the first minute of the trajectory. The change in o (Figure A5.1.16) is
also completed in the first minute corresponding to the change in heading angle.
The spike in o introduced by the constant velocity turn upon reaching the cruise
arc may be ignored in practice with no effect upon the optimal trajectory. Note
that the entire initial turn is accomplished using T*='TmaX: the changes appear-
ing in Figure A5.1.17 are due entirely to the changes in height and Mach number
upbn which Tmax depends. As eéxpected from Figure A5.1.4 where the initial turn
was formulated, the necessary adjustment in the y coordinate is completed in the
first minute (Figure A5.1.19) during the change in heading angle. Figure A5.1.21
shows the time-history of the derived variable a. Notice that «=12° at the

beginning of the turn where lG|=(%1=oS which is the max turn locus. Figure A5.1.24

*The Figures A5.1.11 - A5.1.42 are collected at the end of Appendix 5.1.
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[;iven initial conditions: Ep,Bg

choose B. or l,({{ t
choose By or A,(1) t

into regions corresponding to values of Bl or AB(l) S0

R-. The beta-energy s

guess may be made

f""""""'"'"B}‘_';"j \13(1) R
' L
initialize variables initialize variables
for backward integration for backward integration
lg,] = 1078 -107% < 2 (1) < -1078
determine t1 from (1.61) and: determine
E(tl) - Eqn. (1.52) ' E(1) - Eqn. (1.82)
8(ty) = 8y 8(1) - Eqn. (1.87)
x(tl) - Eqn. (1.58) “ | x(1) - Eqn. (1.83)
y(tl) - Eqn. (1.55) AE(I) - Eqn. (1.81)
AB(tl) - Egqn. (1.57) V*(1) - Eqn. (1.84)
AE(tl) - Eqn. (1.69) o*(1) - Egn. (1.85)
0‘(t1) = o, - Ean. (1.62) T*(1) - Eqn. (1.86)
T*(tl) - Eqn. (1.64)
V*(tl) - Egqn. (1.65)
L ]
| —
v

determine optimum controls
determine o* and T* at each step using Eqns. (1.16), (1.17), (1.70), (1.71)
and (1.72) to (1.74) and V* every 4th step using (1.75). This consists of
minimizing the variable portion of the Hamiltonian using a 1-dimensional
search in V at constant state. First the whole range in V is scanned at
7.5 m/sec intervals to locate the local minima. Once the presence of a
minimum is detected a Golden Section algorithm is used to determine its
exact location. A comparison of all local minima determines the global minimum.

F_Using a 4th-order Ruﬁégzkﬁita routine integrate one step of Eqns.: B

E - Eqn. (1.1)

B - Egn. (1.2)

x - Eqn. (1.3)

y - Eqn. (1.4)

iE - one of Eqns. (1.76) to (1.80)

XB - Eqn. {1.60)

Using o*, T*, and V*

NO

test if Bo satisfied

TERMINATE

BOX A o L
update Bl
or Aﬁ(l) o3

T

Figure A5.1.6.-Flowchart for Optimal Trajectory.

r
'
'
1
'
]
'
]
'
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is an altitude-range profile of the trajectory where the very fast.changes in
altitude are clearly visible. The variations in Mach number with range appear
in Figure A5.1.25. The various combinations of initial conditions (BO,EO) that
can be reached with this AB(l) value can be seen in Figure A5.1.26 while Figure
A5.1.27 shows changes in o with energy-height. The horizontal plane projection
of the initial turn trajectory appears in Figure A5.1.28.
A very interesting view of the trajectory is obtained from the altitude-

Mach number profile of Figure A5.1.29. The energy contours have been added in

as well as the [o| =0 =0, maximum velocity constraint and the o=0 with stall

constraint. Starting on ihe maximum turn locus, the trajectory consists of a
dive at approximately constant energy till the velocity has increased to about
0.9 M. The velocity remains approximately constant at 0.9 M while the trajectory
gains altitude. Using Figure A5.1.26 which gives the change in 8 with energy
together with the altitude-Mach number profile, the progress of the trajectory
can be interpreted with regard to the change in heading angle as well. By the
time the heading angle relative to cruise is below about 5°, the trajectory
essentially coincides with the AB=0 min-time path of Parsons, Bryson and

Hoffman (1975). The trajectory follows this path to the Vmax constraint and

then at Vmax to the cruise point.

A5.1.9 Formulation of the Final Turn
There are two general types of final turns: (1) those beginning with a

period of constant energy-maximum thrust turning and (2) those beginning with
minimum thrust and straight bank angle chatter. Each of these is now described
in detail.

(1) Turns beginning with maximum thrust. The approach here is similar to
that for the initia] turns. We assume an initial turning segment with T= Tma
E=E. and V= Vmax

The minimum time cost function may be expressed as:

X!
as in Figure A5.1.7.

dt

o RuinSTM8  Ruinfp +ftf

ax
Jnax . max m
time in cruise. time in  time in

turn at  turp at
V= Vmax V< Vmax
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* < -
v < Vmax» T*=0

T% = .
or T Thax

tfoxf, Bf'Ef

Figure A5.1.7.-Constant Radius Turning Segment Within Final Turn.

subject to equations of motion (1.1) - (1.4), (1.12) - (1.15) and the boundary
conditions o

.B(té) = By, free parameter B(tf) = B¢
x(tz) = RminSinBZ’ free x(tf) = Xg¢
.Y(tz) = Rm'in(l'..cosﬁz)’ free .Y(tf) = Y¢

The Hamiltonian for the probfem is as in equation (1.27). The first order
necessary conditions and first integral are given by (1.29) - (1.37). We now
have the following initial adjoints derived as for the initial turn:

-w(1 - cosB,)

ae(t,)
o TEVR2 o 2
S ZDLVmaxtan O
o =R : (1-cosg,)
DY (t ) = ll'l'il‘lA 2
g\ “2 v :
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)

o

The determ1natlon of the opt1mal f1nal turn traJectory closely parallels ‘that

" of the initial turn as given by equat1ons (1. 60)- (1. 80), w1th appropr1ate sub-
script changes The state and adjoint equat1ons are 1ntegrated forwards from
time t2 and the problem is parameter1zed 1n terms of B2 ‘At each step the opt1-
mum controls are evaluated us1ng equations (1.70) - (1 76).

o (2) Turns beg1nn1no with minimum thrust and bank angle chatter. These
“turns require an initial period of straight flight with minimum thrust and bank
angle chattering between positive and negative minimum values. This is a maxi-
mum deceleration arc and is similar to a singular arc as it only occurs with
'B=o. The Hamiltonian with Az =0 is given by:

AV
H=1+— (T-D -Dzseco)+>\Vcose+)\yV sing
which is independent of the sign of the bank angle. Application of the Minimum

Principle yields:

T*

0 (AE > 0)

o* =-"Lochat(v)

Vv

AV
arg min'{b =1 - —%—-(DO+-DLseczgchat) + AXV cosBS + AyV sinﬁé}

- where Gchat(v) = min[os(v),cm]

Bs = cruise heading

Note -that as a result of our modeling, bank angle can be changed instantaneously
and so an equal time chatter between positive and negative bank angle can be
made so thét B=0 on the average and hence AB remains zero. For a better under-
stand1ng of the geometry of the problem consider the M1n1mum Pr1nc1ple appl1ed

to the problem with B =0 so that ly— 0:
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in =+ Oigag)- B0
For a given state the state-ve]ocity space (hodograph) appears approximately as

in Figure A5.1.8 considering just a single section in each plane. This approach
was, an, a1d in the determ1nat1on of opt1ma] ve10c1ty when T* 0. As 1n F1gure

AS. 1. 8 the adm1ss1b]e state~ ve1oc1ty space has a non-convex nature SO. that after
leav1ng the cru1se arc at V* V ; the solut1on can be expected to Jump at. some
”polntalong the traJectory from the T* 0 V* Vmax’ o* = o, .corner to the T* =0, .
V* for |o|-—o =0 » |o* |-os-om corner of the state- ve1oc1ty space. Th1s know-
ledge, reduced the one-d1mens1ona] search in ve]oc1ty descr1bed in equation (1 75)
to Just a. check at these two ve]oc1t1es As a result computat1on time was greatly
reduced . - | -
The turns w1th bank angle chatter may be formulated as fo]]ows

E=E
Vi =

0

max
0<T*<
OIS Tmax

O'*=.0-

*= =
< T=0or T*=T

\ TP Berets
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Figure A5.1.8.-Sections Through State-Velocity .

with the cost function expressed as:
X E £
min J=-——-,\0+flg.£ +ffdt
T.V,0 Vmax “Fc E |v=yx 4
T*=0
% =
o tdchat _
—— . -~ -/ —
time in. time in chatter time in
cruise turn
which is
(- V )
X E v t
min J=A1+f1——,"ﬂd5 +ffdt
* =
T,V,o Vmax EC E l*= 96 t:1
““chat
V=Vy*

subject to equations (1.1) - (1.4) and (1.12) - (1.15) and the boundary conditions
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E(tl) = Eps free pargmeter' | E(tf) = Eg

B(t)) = 0 LBt = B
x(tl).= xl(El)’ free _ i:.x(tf)r; Xg
y(ty) = free | y(te) - ve

The Hamiltonian and first-order conditions are the same as before: (1.27) and
(1.29) - (1.37) .with the initial adjoints

( ) l‘ V )
Vmax/ -

T*=0

=
0% = *0chat
V= V*

“'”Xé(ti) =0 for continuity across juncture with chatter arc

N |
AX(tl) - v
max
Ay(tl) =0

Again we have the problem parameterized in terms of a single parameter El'

A5.1.10 Numerical Results

Parsons (1972) presents numerical results using the theory described above.
Figure A5.1.9 gives the family of trajéctories in the beta-energy plane and the
regions marked I to VIII are described by means of the control programs in
Figure A5.1.10. | For the chatter cases ty has to be determined by integration
of the equation: '

¢ =J[E1!ﬂ§
; !

V=V*

T*ﬁ:O'

o* =g
chat
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Figure A5.1.9.-Change in Heading for Variable-Altitude Final Turns
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Thrust Final Region or

Type Program Bank Angle Program Line of Fig. 3.5.3

1 Tmax Oes 0, <O<O, Oy O =0 I '

2 Tmax’ 0 Oe» O ST<Ops Ops Op =0 II

3 Tmax" 0, Tmax s Og <O <Tps Ops Op =0 III |

4 Thax 0. %0 <0ps Ops Op =0 IV

5 0 chatter o, .. Op v

6 0 chatter 0 hat’® %m® %m" s VI .

7 0, Trax chatter £9chat? On* Om ™ T | VII

8 0 chatter 0 .. VIII

Figure A5.1.10 : . o

" Summary of Control Programs for Variable-Altitude Final Turns from Cruise Arc -




and then the four states and two adjoints were integrated from t) to te. As in
Figure A5.1.9 the zoom climb when V* jumps is followed after a short while on
the max-turn locus by a switch to Tmax from T=0. As exp]ained:earlier,.com-
putation time here was considerably lower than that in the initial turns because
of the knowledge of the non-convex nature of the admissible state-velocity space
reducing the search for V* to just two points.

Trajectories beginning with maximum thrust were of the same form as those
with chatter except that there is no straight flight portion. In the altitude-
Mach space, the trajectories move down the maximum velocity constraint and then
zoom to the max-turn locus as for the example case. The constant energy turning
is with T=.ﬂnax followed by T=0 on the max-velocity constraint through the zoom
and onto the locus. After a short stay on the locus, thrust switches back to-
max. These turns are suitable when the final energy is high, that is, around

24 - 28 Km.

A5.1.11 Computational Efficiency

In obtaining the example trajectory of Figures A5.1.11 to A5.1.29, a ratio
of about 2:1 resulted for CPU time:real time. It is possible to reduce this
ratio to at least 1:2 by making the program more efficient. It is worth men-

tioning that substantial improvements were made to arrive at the value 2:1 as
initially the ratio was of the order of 10:1. This was achieved by allowing a
tolerance of 15.2 m and 0.001 M on the spline fits for all the tabulated data,
i.e., for changes in altitude and Mach number less than those above, new values
of aerodynamic or atmospheric data were not obtained. The sacrifice in accuracy
was minimal. Another time-saving method was to increase the storage in the com-
puter (e.g., spline coefficients) so as to avoid calling standard spline fit sub-
routines too many times.

In analyzing the distribution of CPU time among the major computations re-
quired, it was found that the calculation of V* was heavy on time. Hence, the
frequency of this computation was reduced to every 4tb step which resuited in a
considerable decrease in CPU time. The sacrifice in accuracy began to show up
when the frequency was reduced to less that every 4tb step. In order to under-
stand the structural form of the Hamiltonian F(v), the curve was plotted out at
various stages along the trajectory. Figures A5.1.30- A5.1.42 cover the major
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changes in F(V) and hence V*. As expected, these occur éTQng the zoom maneuvers
where velocity is traded for altitude at constant energy and in very little time.
An anticipation of when these jumps in V* occur (i.e., when zoom maneuvers are
made) will allow a reducfion in the range of V oVer which the search is madg
for V* at points along the traJectory between zoom dives. , 1
For real-time implementation (Subsection 5.5.2) computat1on t1me is con-
s1derab1y reduced by storing parts of the traJectory (e. g-» the AB=0 m1n1mum
time path).
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APPENDIX 5.2 :
HIGHER ORDER APPROXIMATION FOR h-LAYER SOLUTION

The exact solution of the o,y controls for the h-boundary Tayer requires

solving three simultaneous, nonlinear equations for o,y and a Lagrangian multi-
plier A. These equations are

(2.1) 0= (Laa + T sina) - mg cosy

(respectively equation (5.6.2) of SggtionIS.G)

(2.2) 0= (\)’—C + ,\mg) - [1+ A % (T..c.(.JSOL-_DO—aZnLa) + ML+ T sina)lcosy
(respectively (5.6.6))

(2.3) 0= -AE (T sina+ 2nLaoc) + A(LOL+T cosa.)

&<

(respectively (5.6.7)). .
Note that the validity of equation (2.3) depends on the optimal a not occurring
on one of its constraints (i.e., O'<a‘<as must be true).

We assume a power series expansion for cosy and.-‘A which solves (2.2), (2.3)
simultaneously. That is, suppose that if cosy=c(a) and A= 2x(a) Solve (2.2),

(2.3), then

(2.4).  clo) = cy*cpu+ c2a2 oL

I«

(2.5) Ma) = Ag + Ao+ A5+ oL

We will solve for Cis A; up to i=2.

;
For i =0, equations (2.2) and (2.3) become

' = (L v
(2.6) 0= <Vc + Aomg> - [1+ g ﬁ-g--('[..])o)]co

Poate Lo
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(2.7) 0= ALy *T)

Hence, we have

Sl _ -
v
v
(2.9) CO = Vc '
* Y
L+ Xt g (T-Dg)

For i=1, equations (2.2) and (2.3) beéome

ST Y
(2.10) 0 1mg - [1 +f = mg (T- DO)]c0

v
(2.11) 0= aF o (T 2nk) + AL +T)

Hence, we have

v

(T+2nL,)
(2.12) 2 = % ng .
(L*T)
: XEV(T+ 2nL )
(2.13) €y =

(L o TR o mg (T-Dy))

For i=2, equations {2.2) and (2.3) become

(2.14) 0 = xmg - [1+ ax ——-(T DO)]c2 - - AE mg (2-+ nk, ) + xl(L 4-T)]co

E mg

(2.15) 0 Az(La4-T)

Hence, we have
(2.16) A, = 0

Equation (2.14) becomes after substituting A from (2.12)
| 223



T

| ] y Vo ,
(2.17) 0= [1+ 2 2c (T-Dg)Ie, + Dif g (7 *+nky)Iey

Hence, we have

| V\., V T |
. _(ﬁz)xg ﬁa'(?i'FnLa)

(2.18) ¢ ,
2 g s (T-0p))?

'The preceding perturbation series for y(a) is used to solve for o from (2.1)
as follows. Substitution of (2.4) in (2.1) gives

(2.19) 0 = Laa + T sino - mg(coi-clai-czaz)-
To be consistent, we should expand sino to second order in (2.19) and solve .

(2.20) 0 =La+ T - mglcy+cia+cyn’)

We could solve (2.2) directly by quadratic formula. Instead we will expand o in .
a perturbation series with respect to the parameter ‘ :

(2.21) &=
a-
Thus, (2.20) becomes

(2.22)‘ 0 f g - s(coiicla-Fczaz)

(¥

where we assume o(e) is given as

(2.23) « ag * eaq + €2a2 + ...

For i=0, (2.22) becomes
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wh1ch gives ao d1rect1y
For i= 1, (2 22) becomes

(2.25) 0=a;-cy
wh1ch g1ves al as

(2 26) _Ql =cg

g

1 FQr i%52,_fZ;Zé)_becomes
(2.27) - °= op - (cgay)
whicﬁ give§ | |
(2.28)  a, = cqc
Thus, to second order in o we obtain

@ : ~ _2
(2.29) a = Coe + €iCoE

In terms of the aerodynamic coefficients (2.29) gives a as

et-mg . JL-(mg)zx*V(T-ran ).
(2.30) a = € + C 3
[1+ A = g (-0 I, +T1 [1+2f o mg (T-0y) 1°IL, +T]

To obtain y we may solve (2 1) directly for y, using -the a from (2.30) or we
may use the =er1es expansion for cosy in (2. 4) and solve for Y from that._,lg-
nor1ng terms with 0(e3) dependence would g1ve ' B

"' | L +T
(2.31)_' Y = cos -1 [( “m; )a]

where o in (2. 31) is g1ven by (2. 30)

Note that at this level there is no reason to work with y rather than COSY,
-1 _ ,

and one may as well avoid cos
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The two things we need from the h4boundary layer are y* (or cosy*) and Aﬁ.
We have obtained the former in (2.31). We now obtain'lﬁ.' The adjoint Aﬁ:is
‘such that .

(213@)Q 0=1 A,ﬁ%~c05y*.+zxgrﬁg-(T:qosa* - D0 -inLa(a*)z) + Aﬁvlsinyt

(respectively equation (5.6.9)).
By rewriting equation (2.2) we obtain

v

v v 2
(2.33) {1 - —;.COSY + A ﬁa-(T cosa - Dy - a nLa)}COSY

= (1-coszy)(eL-+ amg) + A(mg cos# - Laa - T sina)cosy
c

Using equation (2.1) we can simplify (2.33) to obtain

v v 2 .2 4V \
(2.34) {1 - VZ-COSY + Ap ﬁﬁ'(T cosa - Dy - o nLa)}COSY = sin Y(v; + Amg)

comparing (2.34) to (2.32) we see that A and Aﬁ are related as follows:

(2.35) Ax = - tany* (JL-+ A*mg)

h v VC
where A* is obtainéd from (2.5) with o* substituted from (2.30). Note that A*
is given as '

(2.36) A* = Ala*
and from (2.12) we have

Ak — (T + 2nL_)
(2.37)  ax = { E_mg o }a*

L +T
a

and hence Aﬁ is given by
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_ S V(T +2nL )\
(2.38) ~ ax= - TAT(L LB @
FET C !.: (La + T)

Thus, we may use either (2.38) or (2.32) directly to obtain Aﬁ from y* and a*,
The direct computation of Aﬁ from (2.32) may be more accurate but (2 38) seems
to give a better idea of how A; behaves in terms of V, y*, ao*. Note that the '
only error in (2.38) comes from the approx1mat1on of A*, and this approx1mat1on5
has an error of O([a*] ) R ' ' '
Constraints. The next possibility to check is whether or not o or vy takes
a value on a constraint. To denote possible constraints, define'ys as the posi-

tive solution vy of

(2.39) 0= La“s + T sinas - mg cosy

if such a solution exists, i.e., if we have

La. + T sina

(2.40) “smg S <1

Likewise, define o as the solution o of

(2.41) 0=1Lpo+ T sino - mg

Analysis of the original optimization problem, to minimize (for y>0) the
function
v V 2
1 --VZ cosy + AE-ag (T cosoa - D0 - nL o )
(2.42)

V siny
(respectively, equation (5.6.4)), subject to the constraints
(2.43) O<y<m
(2.44) 0O<as<a

S

and (2.1), shows that as y~+0, the function in (2.42) tends to + as %n Hence,
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we must have

(2.45) a <o
where o is defined by (2.40) above. ' Note that am<=a or o ='u may oceur.
Thus, the only constrained values of (a,y) are due to the constra1nts on a
in (2.44).
If Qg < s then we check the possibility of

V Vv 2
1 "V; cosy + AE'EE (T cosog - D0 - nLo )

(2.46) -A

> 0w

) SinyS

being optimal. Likewise, we must check the possibiiity of

v
1+ g (T-Dg)

v

(2.47) -\

>0 O

being optimal (the o.=0, y=u/2 solution).
The optimality test for these constraints simply involives comparing A; and
Ag to Aﬁ for the unconstrained problem. The comparison goes as follows:

0

Case 1. a*<0 or a_<a*, either Ah or Ah is optimal. The optima] case corres-

S
ponds to the larger or the two (remember -Ag or -Ah is minimum).
Case 2. 0<<a*‘<as, either Ag, A; or xﬁ is optimal. The optimal case corres-

ponds to the largest of the three.

h-Boundary Layer Algorithm

1. Calculate . from (2.41). o

2. Calculate o* from (2.30) (second order approximation) or from the first
order approximation

v
vC mg
[1+ ¢ = mg (T-Dg) L, +T]

(2.48) a* =

or, if you prefer, by solving the nonlinear equation
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v
v g
C
v

{2.49) 0=La+Tsing -

by a Newton-Raphson method.

IfumSQ then go to 6.

S’
If a*<0 or cxs<a* go to 7.
0 3

5. Calculate Ah, A;, A

h the largest corresponds to the optimal solution,

Ag +a =0, y=7/2
}lﬁ > a*, y*
3
h T O Vg
Go to 8.
6. Calculate o*, if o* <0 then A) is optimal and a=0, y=w/2. If o*>0 then

A

calculate Ag, Aﬁ and choose the larger--this gives the optimal.

Go to 8.

7. Calculate Ag, A;. The larger corresponds to the optimal solution. Go to 8.
If h<h(E), keep v>0 as it is (y=-ys, n/2 or y*). If h>h(E}, take -y
instead.

STOP
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APPENDEL ».73
HIGHER ORDER APPROXTIMATION OF -LAYER SOLUTION

This appendix presents a highev uydei appro:imation of the v-boundary layer
calculation given in Section %.7. The principal improvement is to use a Taylor
series expansion ta determine the pertarcbation of the angle-of-attack from the
value which maintains a steady fliaht paih anale. By calculating &u, the per-
turbation of the angle-of-attact . finm its steady state value o instead of
calculating the angle-of-attack . directlv, we will obtain better numerical
behavior of the solution.

To define the problem more prerisely. we st make some preliminary defi-
nitions. Let L{x) be the function of thne anule-of-attack « defined by
(3.1) L{a) = 1 - g cosy + 7 (T cos. - DO—ancxz) OV siny

and let f(z} be the function of v defined hy

(3.2) fla) = Lo + T =ine - mg w5y

Note that the functions L »nd f al<o depend or the flight path angle y. The
optimization prablem is to winiive the ratiao L/f if vy *{E,h) and to maximize
this ratio if v *(E.h). wher- b 5y Jdenotes the pseudocontrol value of v
calculated in the h-boundar: lTaver [v tae minimization we are to restrict
values of o such that (v} {: Tikewise, in the maximization we are to restrict
a so0 that f{w) < 0. In additicn *h=ve ars inequality constraints on o, namely
(3.3) 0 <t

Let us define the steady state viriue ¢f - o3 the value of ~, denoted s which
solves the equation

)

(3.4) 0=l

That is, o, is the anale-ni attu b i »sinrsine - in steady state. Note that

0
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% depends on v (as well as E and h through the aeradynamic coefficients L, and
T). As pointed out in Appendix 4.2 on the existence of solutions to boundary
tayer calculations, a solution to the optimization problem will exist in this
case with o> o for vy <y* and G < for y>+v*. The former case corresponds to
f(a) >0 and the latter case corresponds to fla)<0. Thus, in either the minimi-
zation or the maximization it wiil be necessary for o to be found in the interval
Gg<as o (for the minimization) or in the interval 05a<u0 (for the maximiza-
tion). In each case, the optimal a is either an unconstrained value or it is e
(in the case of the minimization) or 0 {in the case of the maximization).

As we pointed out in Section 5.7, when E< EC and y>vy* the optimal o is 0;
similarly, when E> EC and y<v* the optimal « is Q- Thus, we will consider only
the other two cases when E> EC and v > y* or when E<EC and y<vy*. To determine
the optimal o in these cases we set the derivative of L{a)/f(a) equal to O in
order to determine the unconstrained values of o and then compare these values
to the corresponding constrained values of o. Setting the derivative of L{a)/f(a)
equal to O gives the equation

(3.5) Fla)L {a) - F'{a)l(a) = O

r

To obtain an approximate expression for the solution a, (unconstrained o) of

{3.5) we expand L{a) and f(a) in a Taylor series around 0g- Thus, we obtain

(3.6)  Lla) = Lioy) + L' (eg)da + (o) (605)
and
(3.7)  fla) = f {og)de + 5 (ag) (5a7)

Note that we have neglected terms higher than second order. Substituting (3.6)
and (3.7) into (3.5) and collecting terms gives the following quadratic equation
for a.

{3.8) f'{u L(ao) + f”(uO)L(ao)(Ga) + %(f"(aO)L‘(uO) - f'(uO)L"(uO))(Gaz) =0

1

9’

The solution of this equation is given by the quadratic formuia
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(3.9) S =
"f" O)L(O'-O) '\/{(f (0'-0)‘-((10))2‘2{:'(aO)L((’-O)(f”(aD)L](uo)"f'(uo)l—“(ao))}
{f“(ao o (QO) - £ O)L 0)}

To determine which root to choose we must calculate the derivatives of f and L
from the original expressions (3.1) and {3.2) for f and L. Thus, we obtain

v .V .
(3.10) L(ao) =1 - vz—cosy + AE aa-(T COSaD-DO-nLaaOZ) + AEV siny

(3.11)  L'(ag) = -A% a% (T sinag + 2nL_ap)
(3.12)  1"(ag) = -1 ﬁ% (T cosay + 2nL )
{3.13) f'(ao) =L T COSsay

(3.14) f”(ao) ~T siney

Substitution of (3.10) - (3.14) into (3.9) gives us

2(L_+7T cosn,)
- _IL “J[ 2 o 0
{3.15) Sa = - 'S {Slnao Sin oy * T K}

where K is given by

(3.16} K= - — + 2nLaT(aDsinaD + COSaO) = LaT cosay LuEEn)
and L is L(aU). Note that K has the opposite sign of AE. Also note that L, T,
Lu, N, COSGy, sinao are ali positive. Knowledge of the signs of these quantities
will enable us to determine which root to take in (3.15).

Suppose that E<:EC and y<vy*. In this case we must have da>0, Since
E‘<EC, the adjoint A* is negative and thus the coefficient X is positive. Thus,

E
in this case the unconstrained value for &u is given by

{smao '\/sm ay - Z(L +T COSO‘.O)TL}

1

(3.17) e
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On the other hand., if E> EC and vy >v*, then we must have §a<0Q. Moreover, the
coefficient K is negative in this case. Unfortunately, this means that both
rodts of (3.15) are negative and we cannot immediately distinguish which is the
correct root. Moreover, for K negative it is possible to obtain complex roots
in (3.15) and we must be able to handle this case adequately to obtain a real
value for So. - What follows is an algorithm for calculating 8o in the various

cases of E and v.

y-Boundary Layer Calculation: Algorithm

1. If E<E_'and y>y*, Tet a=0 and stop.

2. If E>EC and y<vy*, let o= g and stop. ‘

3. If E<E. and vy <vy*, calculate Sa from (3.17) and go to step 5. -

4. If E> EC and y>+vy*, calculate both roots from (3.15) and go to step 6+

5. If aoq-au:>as, let a=a. and stop; otherwise, go to step 7.

6. Replace complex roots by real part. If aO-FGa < 0 (for both roots), let
0=0 and stop. Otherwise discard any root such that a04-6a<:0 and go to
step 8.

7. let a, =aq * o Choose Q= o 50 whichever minimizes L(a)/f(a). Stop.

let au=(x0+-6u (both roots for o). Choose a=oy Ora= 0 whichever maxi-
mizes L{a)/f(a). Stop.
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CHAPTER 6
REAL-TIME SPT CONTROL LAW

This chapter describes the real-time SPT control law as it has been im-
plemented and tested on the CDC 6400 computer. Section 6.1 contains a descrip-
tion of the control logic for different parts of the flight, namely before the
cruise arc (Case 1), on the cruise arc (Case II), and after the cruise arc
(Case III). An estimate of the total computations required is also given. The
exact computer time for each cycle of the control computation will depend on
the characteristics of the flight computer. This in turn will determine the
control update rate, which can vary for different control loops. In general,
the computation rate for the faster layers must be kept higher than that for the
siower layers in accordance with the SPT approximation. Fortunately, the com-
putations involved at faster layers are less than those at slower layers so that
the SPT algorithms of Chapter 5 are easily implemented to satisfy this require-
ment.

Other sections of Chapter 6 contain results of using the real-time control
algorithm for an F-4 aircraft. The results are very encouraging both in terms

of accuracy and computation time.

6.1 Description of Real-Time Control Logic .

The purpose of real-time control Togic is to compensate for changes in
target relative position, velocity and heading. A change in target velocity
produces a change in the intercept point, namely, tes x(tf) and y(tf). If the
pursuer's position is on or before the cruise arc, this requires a change in
cruise heading Bc and time t. for coming off the cruise arc. It is convenient .
to separate the control logic into three parts depending on the position of the
pursuing aircraft relative to the target.

6.1.1 Case I: Before the Cruise Arc

If the pursuer is on the energy climb path to the cruise arc and BC is
changed, a change is reqyired in B before the cruise arc. For small g-changes,
a linear control law relating o to (E,B) can be used. This may produce small
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changes in (E,h,y) which again can be compensated by 1inear feedback law. The
aircraft state would return to the energy climb path after the required correc-
tion in B has been made.

If the change in B is large, Parsons' (1972) energy state solution suggests
the use of nonlinear control law. This requires zoom climb or dive to the max-
turn-rate (MTR) locus, heading change through the appropriate amount and.zbom&.;
dive or climb to the min-time enérgy (MTE) climb path. Boundary layer qdhfroi
calculations for h and y are required to complete the zoom maneuvers. Thev _
latter are basically vertical plane maneuvers at constant thrust, requiring ca]-h
culation of o to complete the zooms. However, simulation results for.the F—4
have shown that it is betfer to turn at current energy without zooms since the
zoom dynamics is quite slow (see Tables 6.2.1, 6.2.2 and 6.2.3).

6.1.2 Case IT: On the Cruise Arc .
Control Taw similar to Case I is used here except that it is much simpler

in form since the linearized system is time invariant and the optimal cruise
energy is constant. Thus, constant feedback law is appropriate for small changes
in Bc’ h and v.

6.1.3 Case IIT: After the Cruise Arc S
The terminal part of this case involves short range optimization problem

which is beyond the scope of the present study since SPT is not valid for this
case. However, for small changes in terminal conditions, a linearized solution
is appropriate and this would take the same form as the linear solution in Case I.

6.1.4 Feedback Structure of the On-Line SPT Algorithm

Figure 6.1.1 shows a schematic of the on-1ine SPT algorithm. From a feed-
back control viewpoint, it is a hierarchical structure with six loops. The .
fastest loop, i.e., y-loop, is at the bottom of the hierarchy and it requires
inputs from all the higher loops. Since the higher loops operate at slower
speeds, these inputs to the y-loop are updated at different rates which are much
less than the speed of the y-Toop. The command y* is provided by the h-loop
and the nonlinear SPT control law computes o to follow y*. If the error |y - y*]
is small, a linear feedback control law involving both h and y is used to take
into account the interaction between the two loops.
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The sampling times and the control update rates of the different loops in-
crease as one goes down the hierarchy. This causes no problem for the SPT al-
gorithm since the optimization problem at Tower levels is simpler than the opti-
mization problem at higher levels. 1In Figure 6.1.1, Case # corresponds to
Cases I, II and I1I. The notation aﬁ denotes the optimal value of a in the h-
boundary layer, which is the asymptotic value for o in the y-boundary layer. .
Thus the calculations of o at higher levels serve as checks on the calculation
of o at Tower levels and may be used to shorten the duration of the boundary
Tayers.

6.1. 5 Real-Time Capability Assessment

In this section, we provide execution time and storage estimates for the
different control loops of Figure 6.1.1 on a Texas Instruments 9900 microcomputer.
TI9900 has a memory of 32K, 16 bit words and basic instruction execution times
in microseconds afe given in Table 6.1.1. The CPU times per ijteration, nominal
number iterations and storage requirements for control loops of Figure 6.1.1
are given in Table 6.1.2. The y-loop, for example, takes 1.5 msec of CPU time
per iteration for a control o update and, therefore, can be iterated up to six
times for 9 msec if the measurement sampling interval for vy is, say 10 msec.
Slower sampling rates for y state would allow time for more iterations of the
control 1oop. The control update rate for the complete on-line calculation
would be determined by the radar measurement rate. Assuming 10 samples per sec-
ond, a total of 100 msec are available for control computation. If the CPU time
is allocated equally between all the five loops, 20 msec of computation will be
available for each control loop. This implies that two iterations of the y-loop
calculations can be performed 6 times during 20 msec so that a sampling rate as
high as 250/sec can be used for y. It is clear from these figures and the num-
bers in Table 6.1.2 that the proposed algorithm can be easily implemented on-
line using a TI9900 microcomputer.

The estimate of 27 msec for a complete control calculation of all the loops
including linear feedback control implies that radar measurement rates of as
high as 30 samples/second can be used. This would allow interception of highly
maneuverable targets. On the other hand, if lower radar measurement rates are
used, CPU time is available for further refinement of the SPT controls. In
particular, the implementation of one or two iterations of the "continuation
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Table 6.1.1
Execution Times for

TI9900

. Instruction

Execution time
(microseconds)

(Clock rate is 3 MHz)

Branch
Register to register

Add (words/bytes)
Register to register
Indirect to indexed

Multiply

Register to register
Divide

Register to register
Shift (left/right)

1 bit

8 bits

Move data (words/bytes)
Register to register
Register to directory/index

Load communications register unit
(register to CRU)

8 bits
16 bits

Store CRU (CRU to register)
8 bits
16 bits

2.67

4.67
8.67

17.33

41.33

4.67

7.33

12
17.33

14.67
20




Table 6.1.2

TI9900 CPU and Storage Requirements for
the Real-Time SPT Algorithm

Number of CPU/ Average
average iteration cycle time
jterations s (msec) (msec)
required

tf'— calculation” 4 2 8

BC - calculation 4 1 4

E - BL 4 1 4

Linear feedback around x-y

solution (u,0,a controls) 1 0.5 0.5

Linear feedback around

E-BL (0,0 controls) 1 0.5 0.5

B - BL 2 2 4

Linear feedback around

g-BL (o,a controls) 1 0.5 0.5

h - BL 4 0.5 2

v - BL 2 1.5 3

Linear feedback for
h and v (a controls) 1 0.5 0.5

Estimated storage for
software

TOTAL 27

BL = boundary layer

Typical sampling interval for radar returns = 100 msec

Storage
(words)

400
400
210

20
100
500

100
10
10

400
2150

4000

6150
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algorithms" discussed in Chapter 3 seems feasible within a total CPU time of
100 msec. Table 6.1.2 also shows that the storage requirements are well within
the 32K 1imit of the TI9900.

6.2 Simulation Results

In this section and the next, we describe simulation results obtained using
the real-time SPT control algorithm. First a more detailed description of the
actual algorithm is given since certain minor but important modifications to the

SPT control law were required.

6.2.1 Climb to Cruise Arc
The optimal flight path to the cruise arc is obtained by retrieving from
storage V*(E) which provides the necessary information to construct the E boun-

dary layer. h and y boundary layers are then added onto the E-Tayer solution.

6.2.1.1 E-Boundary Layer Calculations

As mentioned in Subsection 5.3.2, the necessary quantities for the E boun-
dary layer control problem are V*(E), h*(E), o*(E), u*(E) and A*(E). Having
determined V*(E), however, the remaining quantities are directly determined from
E and V*(E).

V*(E) was determined off-line for a fine grid (1 point/61 m) of values of
E, and a:piecewise 1linear approximation was then applied. For E< Eco V*(E) was
determined by maximizing (5.3.10) subject to (5.3.11). The maximization was
performed by exhaustive search on a grid (1 pt/(12.2 m/sec)). For E> Eco V*(E)
was determined by minimizing (5.3.10) subject to (5.3.11), again by exhaustive
search. For E> Ec’ it was found that V==VC= 590.2 ms'1 was optimal.

Figure 6.2.1 shows the piecewise linear approximation for V*{E). The approxi-
mation was chosen such that its divergence from V*(E) was always 1ess than
6.1 m/sec. We note that there is a jump from 585.2 to 590.2 ms-1 at E= Ec‘

Figure 6.2.2 contains a flowchart which represents the E boundary layer
control program. This flowchart may be regarded as a detailed version of Fig-
ure 5.3.1. .

We note that in the last block of the flowchart the quantity %%-is computed.
This is the implementation of (5.3.1) with a=o*, V=V* and uTmaX==T. This
calculation will not be required on board the aircraft since E would be measured
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or estimated from sensors.

A simulation of the aircraft trajectory has been run using the controls
calculated for the E-boundary layer. The simulation cansisted of a predictor-
corrector (Adams-Bashforth, second order) solution to equation (5.3.1), with
o=o* and UTmax determined by the control algorithm at each step. The stepsize
was fixed at .5 seconds, and the simulation was run past the point where the
aircraft reached the cruise energy-height. The initial energy-height was 5482.7 m.

Figures 6.2.3-6.2.9 show the computed time histories of energy-height,
altitude, velocity, Mach number, thrust, range and a respectively for the E-
boundary Tayer trajectory of the aircraft.

The aircraft, with these boundary conditions, reaches cruise energy after
359 seconds. This is slightly slower than the 351 seconds taken by.aircraft
with the same boundary conditions (zoom changes in height and velocity are assumed
instantaneous) in the energy state approximation of Section 6.3. This dis-
crepancy is due to the cruise approximation of V*(E)} by five piecewise linear
functions.

Figures 6.2.3, 6.2.4, 6.2.7 and 6.2.9 show some chattering behavior on the
cruise arc. This corresponds to oscillation around the cruise arc which can be
eliminated by adding some anticipatory action as the cruise energy is approached
or by switching to a Tinear multivariable control law in E, h and vy.

Aside from the slight differences in time-until-cruise, Figures 6.3.1 and
6.2.3 show energy-height time histories which are quite similar. The time his-
tories of altitude, velocity, Mach number and range are also quite similar for
the two algorithms, except at the beginning, where the real-time E-B solution
requires a zoom-dive to the MITR locus. The thrust histories are slightly dif-
ferent, being smoother for the present (E-boundary layer) case. Angle-of-attack
(a) appear to differ between the two solutions, but the effect of o is small.

We have also included in Figures 6.2.10-6.2.12 profiles of altitude versus
Mach number, altitude versus range, and Mach number versus range. These are
also similar to the corresponding plots for the energy state trajectories (Fig-
ures 6.3.12-6.3.14). The controls were computed in a closed loop fashion, and
the control computation to real-time ratio was found to be approximately 1:30.

6.2.1.2 h-Boundary Layer Computations

In order to obtain the pseudocontrol y* and the control a* in the h-boundary
layer, we have implemented the successive approximation scheme suggested in
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Subsection 5.6.1. Specifically, we have performed the fo]iowing_iteration:

- \
(2.1) ag = 0
v
v
(2.2) v, = cos™! —y ¢ -
? i=1,10
\ _ _mg
(2.3) 45 =TT
o
Lot + T sinal - mg cosy.
(2.4) a; = al - ol ! L
La + T c05ai )

We take y*='y10 and a*=<x10. Equation (2.2) is a complete form of (5.6.8), while
(2.3) and (2.4) consist of a Newton iteration to solve for o in (5.6.2). If
h>h*(E) we negate vy* in order to achieve a dive.

Figure 6.2.13 shows a plot if h*(E) versus E. This was obtained from the
E boundary layer simu]ation'of this subsection. We have also plotted, in Fig-
ure 6.2.14, y* as a function of h-h*(E) at two energy levels: E=5482.7 m and
E=13258.9 m. Figures 6.2.13 and 6.2.14 represent the feedback control laws for
the E and y boundary layers, respectively.

6.2.1.3 Addition of a Predictive Feedback Term

It was found that the system behaved better numerically when the nonlinear
feedback terms described above were supplemented by a predictive term Kh(h*- h).
The control law is tany* = tanyloi-Kh(h*- h) and af satisfies (5.6.2). Addition
of this predictive term has the same effect as imposing a penalty cost in addi-
tion to the other cost criteria to penalize h when it is far from the "optimal"
value of h computed as a control in the E-layer. Best systém performance was
obtained with Kh==0.005.

6.2.1.4 y-Boundary Layer Computations

To obtain a* for the y-boundary layer which is the lowest level of the hier-
archical feedback structure, we added a predictive feedback term of the type
K _(vy*-v) subject to saturation limits of 0° and 12°. The use of SPT control

o
together with predictive feedback terms stabilizes the control scheme and
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‘alleviates inaccuracy due to numerical error in the control computation. Best
performance was obtained for Kaﬁ=0.6/coso (0=76° while turning).

6.2.1.5 The Initial Turn
In Section 5.5 where the energy-state solution was obtained, transitions

in altitude and velocity were instantaneous at constant energy by the very nature
of the approximation. Hence it was cost-effective to zoom to the max-turn locus,
~complete the turn on the Tocus and zoom back to the optimal energy climb path.
with h and v dynamics taken into account it is no longer clear whether this is
the optimum strétegy. Hence, a simu]ation of the aircraft trajectory was run
using the controls calculated for the y-layer and two turning strategies were
implemented and compared: (a) turn on max-turn locus and (b) turn at initial
states. Table 6.2.1 presents these results together with simulation results for
the flight path recommended by flight manuals. Also included in this table are
the results of control laws using different gains for the predictive feedback
terms, as well as the energy state solution. The results in the table indicate
that the total time to the cruise arc is fairly insensitive to variations in
these gains (HGAIN’YGAIN)‘ The energy-state approximation assumes instantaneous
maneuverability in h and y states and therefore provides a lower bound to the
optimal solution. The best control strategy was found to be (b) above (Case 9
in Table 6.2.1) and was only 4% above this lower bound while current practice
(Case 10) was 21% above the lower bound and 17% above the best SPT solution (b).
The strategy (a) (Case 8) which involves a climb to the max-turn locus for turning
was 9% greater than (b). Hence although turning is faster on the locus (2.2 sec
less), the initial distance from the locus (about 3000 m altitude here) makes
(a) less efficient than (b).

Figures 6.2.15, 6.2.16, 6.2.17, 6.2.18 and 6.2.19 give a view of the first
20 seconds of the trajectory ({(b) above), 10 seconds of which were taken up in
turning. The complete climb to cruise arc is shown in Figures 6.2.20-6.2.30
with the E-layer and h-layer trajectories included wherever they provide a good
comparison with the y-layer to indicate the purpose of adding boundary layers.
In particular, Figure 6.2.21 shows the zoom dive in altitude (h*) demanded by
the E-layer and the well-rounded descent in altitude achieved by the y-layer.
Figure 6.2.30, which is an altitude-Mach profile of the trajectory, includes in
addition to the E-reduced order solution, the current practice trajectory which
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is recommended by flight manuals.

6.2.2  ° ‘Cruise Arc

Upon reaching the end of the energy-climb path of Section 6.2.1, some minor
adjustments in altitude, velocity and-flight path angle are necessary to attain
‘the gruise values specified in Subséction 5'2 1. As mentioned in Subsection
6.2.1.1, there is a jump in ve]oc1ty from 585 2 to 590.2 m/sec at E= E In
the example simulation, v is s]1ght1y pos1t1ve (4 4°) upon reaching E and
therefore must be reduced to 0°. In order to ach1eve cruise values for all the
states s1mu1taneous1y, a backward integration was performed beginning at cruise
va]ues maintaining £=0 and o as large as possible so as to increase v: these
controls are u=1 and o for £=0. In the real-time case, this integration could
Be_done’off-line and stored as a velocity-flight path angle profile. Forward
1ntégration was begun‘with the nominal cruise values (V=585.2 m/sec, y=4.4°,
etc.) using a=0 to decrease y and u for E=0 and the states monitored to de-
termihé the intersection point with the backward trajectory to yield the optimum
Switqhihg pqint. At this point the backward simulation controls are 1mp1emented:
u=1and o for E=0 to arrive at the exact cruise values. In the example simu-
lation, it took 17.2 secs to achieve these exact values. The same-range could
have been covered in 17.0 secs at V=590.2 m/sec and vy=0°, hence the cost of

these corrections is very small, i.e., 0.2 secs.

6.2.3 Descent from Cruise Arc to the Terminal Aircraft States

This portion of the trajectory is a short range (30-40 Km) optimization
problem. It has been shown in Section 4.4 that the SPT approximation breaks
down as the terminal states are approached. We therefore look to the energy-
state approximation of Section 5.5 to provide clues as to the optimum path to
the interception point. This approximation neglects h and § dynamics and so
allows free (instantaneous) zoom dives and climbs. Hence, we find that the

energy-state reduced order solution requires descent from the cruise arc along
the max-velocity constraint until the final energy is reached after which there
is a zoom climb (constant energy) to the required terminal altitude. In contrast
to this solution we also have what is recommended in operations manuals for
current supersonic aircraft: descent from the cruise arc along the max-velocity
constraint until the final altitude is reached after which level (constant
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altitude) flight is suggested to the required final energy (on velocity).
Simulation of the trajectory along the max-velocity constraint was achieved
by obtaining the two controls: alpha (a) and throttle (u) so as to satisfy

(2.5) Vv (E)E

where Vmax(E) is as in Figure A5.1.2 and Vi (E) is the derivative of V.., With
respect to E.

We now consider a simulation of the zoom climb at constant energy from the
max~-velocity constraint to the final altitude as requ1red by the energy- -state
reduced order solution. A period of pull-out from descent on the max-velocity
constraint to ascent on the constant energy (Ef) contour. is necessary. Basically
this involves changing the flight path angle from negative to positive as quickly
as possible. Since at the final altitude, yf==0°, a switching strategy exists’
so that on the Ef contour, a maximum vy is just reached after which the controls
are switched so as to decrease y as fast as possible (o=0°) to satisfy the ter-
minal constraint on y. There is also an optimum energy at which to begin pulling
out of the V descent so as to arrive onto the Ef contour with a nonnegative
f1ight path ang]e

With =0 on the energy contour (Ef), it can be,easi]y shown that

(2.6) h = -E¢ tanzy + hf seczy

Hence, the switching height hsw is given by

2

- 2
(2.7) hSw = -Eg tan"y ., * he sec Yiax

Hence hSw is the altitude corresponding to Yhax; therefore a comparison
of current altitude (h) to hSw indicates whetherfy nax has been reached. When
n= hSW’ o must be set to zero so as to just br1ng vy to zero at hf The real-
time algorithm is outlined below:

(i) descend on Vmax constraint until pull-out energy with o and u from
(2.5)

(i1) pull-out with a=og, U=1 until E=Ee _ _

(i11) maintain E=0 and allow v to increa;e until Y= Ypax determined by
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testihg current altitude against hSw _
(iv) set o=0 and u to maintain E=0 so that_hf,is attained at constant
._energy-(Ef) with y*=q at ?f . o ;
- (v) complete final turn with h=0, y=0, E=0 maximizing B. o
Example simulations were conducted using the above.algorithm to descend..:.
from cruise to the final states. Two examples were -implemented: _ :
(1) Eg=1.2802x 10" m, h.=9.144x10° m, v.=0°, B.=90°, M.=0.89

(2) Eo=1.0668x 10" m, h.=9.144x10° m, v.=0°, B =90°, M. =0.56 |
Note that horizontal plane constraints {(i.e., Xgs yf) are satisfied by choosing
the corredt cruise heading (BC) and range on cruise (RC). The results for (1)
are presented in Table 6.2.2 which also contains the energy-state reduced order
solution and an imp]ementatioh of current practice. The effect .of eariier pull-
out from descent on the Vmax constraint is shown by the superjorjty of Case 4
over Case 3 in Table 6.2.2. Note that as before the energy-state approximation
solution provides a lower bound to the optimal solution since instantaneous
maneuverability is assumed in the h and y states. The best real-time solution
(Case 4) was 24% above this lower bound while current practice was 28% above
the lower bound and about 4% above Case 4.

The cToseness of the result of Case 2 (current practice) to the best real-
time solution (Case 4) motivated the simulation of exampie (2) above, the results
of which appear in Table 6.2.3. Again the energy-state reduced order and current
practice solutions are included. Here the best real-time solution (Case 4) is
about 19% above the Tower bound while current practice (Case 2) is 65% above
the Tower bound and about 38% above the best real-time solution. Hence taking
the results of (1) and (2) together, current practice is almost as good as our
best real-time solution in (1) where the final Mach number is high (Mf==0.89)
while in example (2) current practice is considerably less satisfactory than the
best real-time solution. In (2) the final Mach number required is lower (Mf==0.56)
and we see that level flight through lower Mach number regions is time-consuming.
Hence-the optimum strategy for descent from the cruise arc is dependent upon
the particular final states required of the airplane.

The whole trajectory of example (2) above, i.e., Case 4 of Table 6.2.3,
is displayed in Figures 6.2.31-6.2.43, of which Figures 6.2.39-6.2.41 represent
the three control (a, u, o) time-histories. We have added:in .the E reduced-order

4
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carc.

solution and current practice wherever the comparisons are meaningful. Note
.that for the purpose of comparing the different cases in Table 6.2.3 a common
range (68.86 Km) had to be considered so Case 4 includes extra range on cruise.
With the exception of Figures 6.2.32, 6.2.42 and 6.2.43, this extra range is not
shown in the figures. . Common range considerations were also made in Tables 6.2.1
and 6.2.2 with extra range added onto cruise wherever necessary.

6.3 Numerical Resu]ts Using a Real-Time Algorithm Based on the Energy State

- Approximation
A real-time traJectory was obtained using the algorithm described in. Sub-
section 5.5.2 with turning only on the max-turn locus. Initial and final con-

ditions chosen were:

hy = 3.353x 103 m he = 8.230x 10° m
My = 0.6

. 3 . 4
. E0 = . 5,517x 10" m Ef = 1.168x 10" m

Xg =0 Xg = 212.0 Km

yg = 0 ye = 169.6 km

8y = 30° B = 120°

Figure 6.3.1 gives the energy changes with time along the trajectory.
Roughly two thirds of the trajectory consists of reaching the cruise arc while.
the section from the cruise to the final conditions is by comparison much
shorter: the rate of energy change being higher along the bank angle chatter

~ Figures 6.3.2 to 6.3.4 reveal the zoom dives and climbs which reflect the -
instantaneous changes in altitude and velocity allowed by the energy-state
approx1mat1on The real-time approximation used here which allows turning only:
on the max-turn locus is clearly visible in Figure 6.3.5 which shows how the
“required 90° turn. is broken up into an 8.3° initial turn and 81.7° final turn.,
Figure 6.3.6 shows the many variations in bank angle along the trajectory.. : By
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the approximation mentioned above turning is with o=a, and.o=0.for straight
flight while-c=?tmin(om,os) during chattering to -maintain average B=0. The
thrust control history is quite simple:- T;szak all the way to:the cruise arc,
_,TszC<'nmax while cruising.since the cruise arc is.an intermediate thrust singular
arc followed by T.=0 while the bank angle chatters and.then I‘=Tmax for the final
Jturn... E ' A : o , T L
_ The“horizonta1wplane-projections of the trajectory appear in Figures 6.3.8 -
.6.3.11. Figure 6.3.11 indicates that a very small portion of the trajectory. :
time is spent in turning on the max-turn locus as compared to -the straight-flight
portions. The alpha control history is given in Figure 6.3.12. The altitude-
Mach number profile of Figure 6.3.13 provides a very interesting view of the
trajectory. From the initial conditions which are on the max-turn locus, the
trajectory executes the initial turn followed by a zoom dive to the minimum time
energy climb path which it follows to the cruise point. After cruising the bank
angle is allowed to chatter while moving down the max velocity constraint.
The trajectory leaves the constraint by a zoom climb to the max-turn Tocus where
it executes the final turn to reach the end conditions which are also on the
locus. If the initial or final conditions were not on the locus, the trajectory
would include zoom dives or climbs to reach the locus. Fiéure 6.3.14 is an
altitude-range profile where the rapid changes in altitude are clearly visible
while Figure 6.2.15 shows the changes in Mach number with range.

In order to perform the tf iterations of the algorithm presented in Sub-
section 5.5.2, some assumptions have to be made about the target dynamics. We
assume that it moves in a straight 1ine at constant altitude and velocity. Then
the steps in the algorithm are as follows:

(1) obtain initial estimate of interception point by calculating the

shortest distance to target path from pursuer

(2) evaluate te= time for target to reach this point

(3) implement (2) - (12) of algorithm in Subsection 5.5.2

(4) compute pursuer trajectory time (tl) to interception point

(5) define the difference as f(tf)='th t, and perform approximate Newton

iteration as follows:
f(tfold)

t =t - ~ t
fnew fo'ld f (tfold) 1
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_ (6) go to (3) if accuracy on tg is not met.
(1) - (6) above were implemented for two cases given in Figures 6.3.16 and
6.3.17. -The first case required six iterations for-a 180° turn to-an‘accufacy

. of 0.1 secs. The second case (Figure 6.3.17) required 11 iterations.. This was
~the worst.case: 90° turn to a target which has already passed the point where

its path is at the shortest distance from pursuer. Hence the two cases indicate

‘good convergence. Note that a better initial estimate of the interception point

(step (1) above) using proportional nav1gat10n or some other scheme would reduce

“the number of iterations.
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Téb]e 6.2.1 Summary of Simulation Resuits far Trajectories to Cruise Arc

CASE -

Time to cruise arc,

starting at H=593.4 m,
M=0.9, energy=5482.7 m
Final range=182.9 Km
altitude = 12192 m,
Mach=2.0, energy=29949.3 m

REMARKS

1.

Energy-layer

380;9 secs

This approximation treats

h and vy as controls and
holds the derivatives h

and y equal to 0. In-
tuitively, it assumes that
h and vy change much more
quickly than E. That is,

h and v are characterized
by sudden changes {boundary

Tavarel Far chart +imac
|0JCI >/ Uy QMU L L HINTDS

and almost steady behavior
for the rest of. the time.

h-layer with
nonlinear and
Tinear feedbdck
gain on tany -
linear gain=0.01
on {H*{E)-H).

387.1 secs

This approximation treats
v as a control, assuming
that y varies faster than
h does. Linear feedback
is also used. It has the:
same effect as imposing a
quadratic penalty cost in
addition to the other cost
criteria to penalize h when
it is far from the optimal
h-control of the E-layer.

h-layer with
hGAIN =0.005

386.9 secs

See remarks above.

v-layer with
hGAIN =0.005 and

Tinear feedback
gain on a,

Yearn = 0-2

Dcagl2°

397.2 secs

The control uses a nonlinear
SPT control together with
linear feedback terms which
represent quadratic penalties
for being away from "optimal"
values of h computed as a
control in the E-layer and
of vy computed as a control

in the h layer. This pro-
cedure stabilizes the control
scheme and alleviates in-
accuracy due to numerical
error in the control com-
putation.

264



Table 6.2.1 (cont.)

CASE TIME TO CRUISE ARC . REMARKS

5. vy-layer with 397.1 secs See remarks in 4.
Yearn = 0-4
O0zagl2®

6. vy-layer 398.1 secs See remarks in 4.
Yearn ~ 0-6
Ogagl2®

7. ~y-layer 397.0 secs See remarks in 4.

Yearn = 0-4
Ozagl2°

8. +y-layer with 90° 438.5 secs Path to locus simulated
turn on max-turn using a flip-flop control
locus and y constrained to be less
Ogagl2® than 47°. Aircraft flies to

= 7R0 the maximum rate turn locus
a=76° {on locus) to turn.

9. vy-layer with 90° 403.0 secs The aircraft executes its
turn begun at turn without returning to
initial state the max rate turn locus.
YG=0.6/coso This strategy is much more
h. =0.005 efficient than (8) given the
G "~ initial distance from the
Ogagl2° locus (about 3000 m altitude).
o=76° while turning

10. Current practice: 472.7 secs This scheme is typical of

turn using o= 60°,
at constant velo-
city, constant
altitude acc. to
M=0.9, constant
Mach # climb to
12192 m and

v =21.8°, constant

altitude acc. to
cruise point.

paths recommended in operations

manuals for current super-
sonic aircraft.
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- Table 6.2.1 (cont.)

CASE . . | TIME TO CRUISE ARC REMARKS

11. Energy layer with 388.7 secs See remarks for 1. The
zoom to max turn - ’ additional 7.8 secs is the
lecus, 90° turn time taken for a 90° turn
on the locus and on the max turn locus.
zcom back to

energy layer
{Parsons solution)




Table 6.2.2

Summary of Simulation Results for Terminal
Trajectories off the Cruise Arc

Time from cruise arc:

h=9144 m, y=07,.. .
range=46.19 Km

energy=29946.6'm, h=12192 m |
M=2.0 to final states: -
energy=12801.6 m, M=0.89,"

-Remarks

Energy-state approxi-

.'Sgé.Parsons (1972)

tain E=0 til11 v reaches
Ymax {=40°); keep E=0

with o=0 so as to reach
h=9144 m with y=0°;

90° turn with a, o, u
g0 as_to maintain E=0,
h=0, v=0

1.
mation solution: for this solution.
down max-velocity This is a Tower
constraint to Ef=12801.6 . bound for the optimal
m; zoom climb to 92.5 secs solution since in-
h=9144 m at constant o _ stantaneous maneu-
energy; 90° turn at o " verability is assumed
E=12801.6 m, h=9144 m in h and v states

2. Current practice: This scheme is
down max-velocity typical of paths
constraint until reconmended in oper-
h=9144 m and vy=0°; ations manuals for
Tevel flight at 118.6 secs current supersonic
h=9144 m to E=12801 m, aircraft.

M=0.89; 90° turn with
0, 0y, U SO as to
maintain E=0, h=0, y=0

3. Real-time solution: This solution at-
down max-velocity tempts to follow (1)
constraint till as closely as pos-
enerqgy=12801.6 m; sible; v and h dy-
pull-out with o=a_, namics require a
u=l till YYpay (§21°); period of pull-out
. . _ . from descent on max-
v=0 w1Eh u=l till o 130.9 secs velocity constraint.
energy=12801.6 m again; The final state y.=0°
E=0, o=0 so as to obtain . f

= = . ° requires y to be
turn yith.o,.a, u,so as while on Ymax
$Soma‘“ta’“ £=0, h=0, energy contour.

4. Best real-time solution: This solution is
down max-velocity better than (3) be-
constraint till cause of earlier
energy=15849.6 m; pull- puli-out from
out with 0=a u=1 till descent on Vmax
energy=1280176 m; main- 114.6 secs constraint

(3048 m sooner).
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Table 6.2.3

Summary of Simulation Results for Terminal

Trajectories off the Cruise Arc .

Case

Time from cruise arc:
Energy=29946.6 m, h=
12192 m, M=2.0 to final
states: Energy=10668 m
M=0.56, h=9144 m,

y=0°, range=68.86 Km

Remarks

. Energy-state approximation

solution: down max-velocity
constraint to Ef=10668 m;

See Parsons (1972) for
this solution. This
is a lower bound for

pull-out than in (3)): pull-
out with a=a_, u=1 till E=
10668 m; maiRtain £=0 til1l

y reaches y .. (=59.6°);
keep E=0 so ““as to reach
h=9144 m with y=0°; 90°

turn with o,a,u so as to
maintain £=0, h=0, v=0.

zoom climb to h=9144 m 138.8 secs the optimal solution

at constant energy; 90° since instantaneous

turn at E=10668 m, h= maneuverability is

9144 m. assumed in h and v
states.

. Current practice: down max- This scheme is typical
velocity constraint until of paths recommended
h=9144 m and y=0°; level 228.0 in operations manuals
flight at h=9144 m to E= -U secs for current supersonic
10668 m, M=0.56; 90° turn aircraft.
with g,a,u so as to main-
tain E=0, h=0, vy=0.

. Real-time solution: down This solution follows
max-velocity constraint (1) with a pull-out
till E=13716 m; pull-out from descent on Vmax
with a=a_, u=1l till E= constraint 10000
10668 m,s maintain E=0 169.1 secs ft before reaching
till y reaches y_ . (=59.6°); . E£=10668 m.
keep E=0 with «P8%s0 as to
reach h=9144 m with y=0°;
90° turn with ¢,a,u_so as to
maintain E=0, h=0, y=0

. Best real-time solution: This solution is better
down max-velocity constraint than (3) because of
till E=15240 m; (earlier 165.2 secs earlier pull-out (1524

m sooner than (3))
from descent on Vma

constraint X
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Also shown is the E-reduced order solution:



68¢

ENERGY-HT(X10% m)

15.0 20.0 25.0 30.0

1

o
0.00

20.00

40.00

50.00 60.00 100.00
TIME (sec)

Figure 6.2.31 Energy Time-History

120.00

140.00

160.00



982 -

14.04

{ 012 .0 -

"10.04

ItA RET

CURRENT PRACTICE

TIME IN SEC.

Figure 6.2.32 Variations in Altitude with Time

cR
M
(e
~ 8.0l
X
LLI .
[
-
=
5 6.07
=T
R RaNGe = 68,86 Km
*_ja.ofz FOR EACH CASE
“ E-REDUCED ORDER
. 2.0%1
;0 } : + > - ’ ' ~
. 0.00 30.00 60.00 90.00 120.00 150.00 180.00 210.00

240.00°



=

S i

o152.4 200

31

40.00 60.00 80.00 .  100.00

TIME (sec)
Figure 6.2.33 Changes in Velocity with Time

140.00

16000 -



-88¢

" MACH .

2.00

1.60

.40

0.00

2.40

1.20

0.00

20.00

40.00 60.00 80.00 100.00 120.00
TIME (sec)

Figure 6.2.34 Variations in Mach Number with Time

140.00

160.00



80.00 100.00 120.00

60:00

i

BETR(DEG)

40.00

20.00

000

.00 20.00 40.00

-Figure

- 68¢

60.00 80.00 100.00 120.00
TIME (sec)

6.2.35 Changes in Heading Angle with Time. .

140.00

160.00



06¢

GAMMA( DEG)

60.00 - 80.00

140.00

}
T

20.00

0.00 "

-20.00,

d i

.00 20.00 40.00 80.00 -80.00 100.00
- TIME (sec)

40-00

Figure 6.2.36 Gamma Time-History

120.00

140.00

160.00



16¢

38

30 N

20.00 40.00 60.00 80.00 100.00 120.00 140.00
TIME (sec)

Figure 6.2.37 Variations in the y-component of the Horjzontal Plane Projection
of the Trajectory

160.00



26¢

[T IR N

0.00

20.00 40.00  60.00 6C.00 100.00  120.
‘ TIME (sec)
Figure 6.2.38 Variations in the x-Component of the Horizonta
Projection of the Trajectory

00
1 Plane

140.60

160.00



€62

1.20

T
\
|

.60

THROTTLE

0.00

0.00 20.00 40.00 60.00 80.00 100.00
TIME (sec)

Figure 6.2.39 Throttle Variations with Time

120.00

140.00

160.00



¥62

SIGMA(DEG)

20.00

60.00

50.00

40.00

30.00

10.00

0.00

0.00

20.00

40.00

60.00 80.00 100.00 120.00
TIME (sec)

Figure 6.2.40 Bank Angle Control Time-History

. 140.00

160.00



662

ALPHA (DEG.)

. SPT CURRENT
3 PRACTICE
s ¢ £
N 7 —
o
[en]
S’ E
S SP1--._;>
u;_-
o
o
o1
o
1 / -~
<
J, RANGE = 68,86 Km
E-REDUCED FOR EACH CASE
o ORDER
o
~T /
‘/ ><
g | 2SPT |
O. ; $ %I\ e L 1 " 3
0.00 30.00 60.00 90.00 120.00 150.00 180.00 - 210.00 240.00
TIME IN SEC. '

Figure 6.2.41 Alpha Control Histories



962

ALTITUDE(X1G n)

"13.5

1g;0

1q.5

7.5 9.0

6.0

Yo/
LS

-+

] } +

30 35 40 45

w
o] N
0 5 . 10 15 20 25

_ X (X100  m)
Figure 6.2.42 Vertical Plane Projection of Trajectory. (Note: this is very nearly the altitude-

. range profile since only a short distance is moved in the y direction while turning at
the end).



E=18288 m

17.5 -

E=15240 m

12.5+F=12192 m

fony
e
=)
T

~
o
RO DA

E=6096 m

ALTITUDE (x 10° )

o
=)

CURRENT
PRACTICE

SPT

E-REDUCED
ORDER

AN

L6¢

1.00 1.25 1.50 1.75
MACH

Figure 6.2.43 Altitude - Mach Profile of Trajectory

2

.00




862

Vet

| ENERGY-HT (x 10° W)

40+
354
-
28

15

10- ,
3, -+ e + A t +— —t
0.00 80.00 160-00 240.00 320.00 400.00 480.00 56C.00

TIME (sEc)

Figure 6.3.1 Changes in Energy with Time

640.00



662

140.0 ¢+

120. 0

(x 102 w)

~ 80.04

~ ALTITUDE

’ 40- 0"

o 20- 0‘

S
e

8
°

3.05 =

0.0 80.00 160.00 - 240.00  320.00  400.00  460.00  560.00
TIME (sec)

Figure 6.3.2 Altitude Time-History

640.00

e ad



00¢

800

700

6001

5001

VOPT (ms™1)

400-L

300-F

182.9 t } ! + t } 1 i -
0.00 80.00 160.00 240.00 320.00 400.00 460.00 560.00 640-00

TIME (sEc)
Figure 6.3.3 Changes in Velocity with Time




2.40

1.60

1.20

MACH

I S

0.00

0.00 §0.00 160.00 240.00 320.00 400.00 480.00 560.00
TIME (sec)

Figure 6.3.4 Changes in Mach Number with Time

10€

640.00

A
1!

N



20€

BETA(DEG)

230-00
=

130.00  150.00

110.00

§0.00

70.00

59:00

80.00 160.00  240.00  _320.00  400.00  480.00  560.00 = 640.00
TIME (sec)

Figure 6.3.5 Changes in Heading Angle with Time




£0¢:

SRS ISR L e e

160.00

120.00
.l.;..,

80.00 -

1
-

chatter

40.00°

SIGMACDEG): -

0.00 .5

~40.00

240.00 320.00 400.00 480.00 560.00 64G.00
TIME (sec)

Figure 6.3.6 Bank-Angle Variations with Time

[
o+
Q
o
(=7

.00 80.00

. 0'8000



¥og

181

THRUST (x 104 W)

6

KRS

0 ; —+— : z : 4 e

0.00 80.00 160.00 240.00 320.00 - 40€0.00 480-00 560.060
TIME (sec)

Figure 6.3.7 Changes in Thrust with Time

640.00

e Lo



S0€

X/RMIN

4.00 6.00 8.00 10.00 12.00

2.00

R A SO g

0.00

0.0

80.00

160.00  240.00 . 370.00 . 400.00 . 4€0.00  S60.00  640.00
TIME (sec) . '

Figure"6.3.8 x-Component of Horizontal Plane Projection of Trajectory




90¢

Y/RMIN )
6.00 8.00 10.00 12.00

4.00

2.00

€.00

0.00

80.00

160.00 240.00 320.00 400.00 480.00 560.00
TIME (sec)

Figure 6.3.9 y-Component of Horizontal Plane Projection of Trajectory

640.00




s

35+

RANGE (Km) -

15a~

10+

5L

0 ; : ; : —t : + y
0.0C £0.00 160.00 240.00 320.00 400.00 480.00 560.00 640.00
TIME (sec)

Figure 6.3.10 Range in Horizontal Plane with Time

L0€



80¢

Y/RMIN

6.00 8.00 10.00 12.00

4.00

Figure 6.3.i1 Horizontal Plane Projection of Trajectory

[en]

=

S

o \13

C.) 1 1 4 n 1 [} L ]

.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00
X/RMIN



60€

ALPHA(DEG)

4.00

12.00

' 10.00

8,00

6.00

1
t

2.00

.00

|

0.00

—t
60.00

160.00

240.00 320.00 400.00
TIME (sec)

Figure 6.3.12 Alpha Time-History

460.00

560.00

4
€40.00



01¢€

-

CALTITUDE (x 10° ™)

20.0T
=_18288
17.5T
=15240 m s=0 stall
15.04 constrain
12.5__E= 12192 m
«—Ccruise point
10.01
E=9144 w
7.54 j A
E=6096 m / \maximum velocity constraint
5.07
E=3048 m
2.5+
0 1' : 1 I 1
0.00 25 .50 75 .00 1.25 { : o0
. . 1.50 1.75 2.00
MRCH

Figure 6.3.13 Altitude-Mach Number Profile of Trajectory




14.0+

‘[

|
12.0

4

. 10.04
&
N
% \
X 8.0
(W]
=
-
=
2 6.0
<
|
4.0
2.0
0 : e : s - | 4 4 ——
0 3 6 9 12 15 18 21 24 27

11¢

RANGE (Km)
Figure 6.3.14 Altitude-Range Profile



r4 8>

0.00

.40

o

1 4 | ] . ] 4

T

ol

RANGE (6D 18 o

Figure 6.3.15 Variations in Mach Number with Range




P vt

Pursuer  Ej = 6.706x10% @ Eg= 1.707x10% m
0 ho=3.176x103 m h= 9.144x10% m
“My=0.8 Me=1.3
secs x0=0 Km Xg= 46.6 Km
y0=0 Km yf=2m.0Km
B.=0° B, = 180°
140+ 0 f
Target EO= 1.600x10% m Ee= 1.600x10" m
120 - hg=9-144x10% m = 9.144x103 m
0. My = 1.21 Mg =1.21
. . Y0=0 'Yf= 0
i X = 212.0 Km Xe= 46.6 Km
80+ . A Yo = 212.0 Kn y§=212.0 Km
8. = 180° B, = 180°
5oL 0 f
40 4-
201
0 3 ra 5 6 7
_2025' # of iterations

€1g

Figure 6.3.16 Convergence of te Iterations (180° turn)

e

R G

X
N
Targef
{
V ]
AB o
~
rd )
Pursuer



yig

(

X
. - 3 - 4
Pursuer EO 6.706x103 m Ef 1.707x10%* m TGKQFt. o
h0=3.176><103 m h4f,=9¢144><103 m
B
t,-t ) = = >
1 -f MO 0.8 Mf 1.3
secs450 = g° =0° >y
T 1‘ 0 Ye© Pursuer
x0=0 Km xf=212.0 Km
400 +
¥o=0 Km yf=294.6 Km
1
350 4 By = 0° B = 90°
BOO-L Target Ep= 1.600x10% m Eg= 1.600x10% m
hg=9.144x103 m h.=9.144x10% m
250 - - -
: MO- 1.21 Mf— 1.21
200 - ¥g=0° 1§ =0°
|
'f \ x0= 212.0 Km g = 212.0 Km
150 - v =42.4 Km y.=294.8 Km
: 0 f
100 _i,_ 60 =90 Bf =90
50 -
K 4 : S SE—
: 1 2 8 9 10 11

# of iterations

Figure 6.3.17 Convergence of te Iterations (90° turn)




6.4 Summary of Numerical Simulation Results

Table 6.4.1 Case 1 - Full Trajectory Simulation
Using SPT Algorithms

Initial States Final States /b
Ey = 5.483x 103 m Ee = 1.067 x 10% m

hg = 0.594 x 103 m he = 9.144 x 103 m

My = 0.92 Me = 0.57

Yy = 0° _ Ye = 0°

Xg = 0 Km Xg = -2.03 Km

T 0 Km Ye = 277.8 Km

By = 0° Be = 180°

Simulation Results

The six state simulation was done in 3 parts as below with total

(ininimum) time =614.0 secs using the SPT algorithms of Section 6.2.

Part Optimal Control Law Minimum Time (sec)
I. Climb to Case 9 of Table 6.2.1.
cruise arc Ax=0.43 Km, 399.3
Ay = 180.7 Km
Figures 6.2.15-6.2.30
II. Minor See Section 6.2.2.
Corrections Ax =0, Ay=64.4 Km 109.3
to achieve
cruise values
and cruise
portion

1I1.Descent Case 4 of Table 6.2.3
from cruise Ax = -2.46 Km,

arc Ay =32.7 Km 105.4

Figures 6.2.31-6.2.43




. Table 6.4. 2, «Case.2 - LFimb to.Cruise Are Simulation..
' - 4Hsing SPT Algorithm o

In1t1a1 States P Final.States: . :;
Same as in Case 1 i Ef_:'2_995xtlo“~m
(Tab1e.6.4..l), - he = 1.219x 10% .m
Me=2.00 . - o
ve = 0°
Xg = 0.43 Km _ .

Yg = 190.78 Km
Be = 90°

Simulation Results

Th1s 1s a s1x state s1mu1at1on and cons1sts of Part 1 of Tab]e 6.4.1

N

p]us" the minor correct1ons to ach1eve cru1se va1ues” of Part 2 of Tab]e

6.4.1 which took 17.2 secs and covered 10 04 Km. Hence tota] (minimum)

time = 416.5 secs. The SPT algorithm of Section 6.2 was used.
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Table 6.4.3 Case 3 - Descent from Cruise Arc Simulation
Using SPT A]gorithm'(Mf = 0.56)

Initial States Final States:

Ey = 2.995x 10% m Ef = 1.067x10* m
hg'= 1.219x10%m . hg=9.144x10%m
My = 2.00 Me = 0.56 |
Yo = 0° vg = 0°

Xg = 0 Km xg = 32.7 Km

yp = 0 Km Yg = 2.46 Kn

By = 0° Be = 90°

Simulation Results

This six state simulation consists of Part 3 of Table 6.4.1 taking

105.4 secs and uses the SPT algorithm of Section 6.2.
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Tab]e 6.4.4 Case 4 - Descent from Cruise Arc Simulation
Using SPT Algorithm (Mc = 0.89)

Initial States

Final States

Same as.in
Case 3

(Table 6.4.3)

Simulation Results

Ee = 1.280><.10L+ m
hf = 9.144 x 103 m
Me = 0.89

Yg = 0°

Xg = 37.4 Km
T 2.46 Km

Bg = 90°

This six state simulation uses the same algorithm used in Table 6.4.3

and is described in detail as Case 4 of Table 6.2.2. Total (minimum) time

is 99.85 secs for a range of 37.5 Km.
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Table 6.4.5

Pursuer States

= = m
" 1] I

~<
o
n

= o0 m
] " 1]

<
o
[}

6.706 x 103 m
3.176 x 103 m
0.8

0°

0 Km

0 Km

0°

1.600 x 10* m
9.144 x 103 m
1.21

0°

212.0 Km
212.0 Km
180°

Simulation Results

This simula
(4 state model o

interception.

interception.

f Section 5.5).

tion uses the energy-state approximation
The algorithm of Sec-
tion 6.3 is used to iterate on te which is the time to

Six iterations were required (Figure
6.3.16) for convergence to an accuracy of 0.1 secs to
yield a minimum-time trajectory taking 452.1 secs to
The trajectory reflects the energy-state
approximation by the zoom maneuvers in altitude and velocity--
tory is similar in character to that represented by Figures 6.
which used different initial and final conditions from those s

Case 5 - Target Interception (180° turn)
Using the Energy-State Approximation

1.707 x 10% m
9.144x103 m
1.3
0°
46.6 Km
212.0 Km
180°
1.600 x 10% m
9.144 x 103 m
1.21
0°
46.6 Km
212.0 Km
180°

X

Pursuer

—>y

the whole trajec-
3.1-6.3.15
tated above,
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Table 6.4.6 Case 6
-~ Usin

Ta arget Intercept1on (90° turn)

Lo o e i s Amd o A

P U I U

g the :nergy State ﬂpprox1md1:10n

Pursuer States

E0 = 6.706x 103 m Ef = 1.707x 104 m
h0 = 3.176 x 103 m hf =9.144x103 m
MO = 0.8 Mf =1.3
'YO = Q° Yf = 00
Xq = 0 Km Xg = 212.0 Km
Yo = 0 Km Y¢ = 294.6 Km
By = 0° B = 90°
Target States
E0 = 1.600 x 10* m Ef = 1.600 x 10% m
h0 = 9.144 x 103 m hf = 0,144 x 103 m
MO =1.21 Mf =1.21
YO = 00 -Yf - Oo
Xg = 212.0 Km Xg = 212.0 Km
Yo = 42.4 Km Y¢ = 294.8 Km
g, = 90° ) B = 90°
0 f X
Tagg;t_ - -
Simulation Results
This simulation is similar to that of Table £,
6.4.5 in that the energy-state approximation
is used and the same algorithm (Section 6.3) Pursuer >y

is also used but differs in the initial and
final states. 11 iterations were required (Figure 6.3.17) and the minimum-
time trajectory takes 690.3 secs to interception.
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CHAPTER 7
CONCLUSIONS

This report has described work performed on the development of a hierarchi-
cal real-time algorithm for'optimal three~-dimensional aircraft maneuvers using
Singular Perturbation Theory (SPT). New theoretical results Justify and develop
systematic methods for real-time computation of nonlinear feedback controls. by
means of SPT and provide an assessment of the accuracy of the resulting SPT con-
trol. Practical results apply SPT to obtain a real-time feedback law for the
three-dimensional minimum time long range intercept problem for an F-4 aircraft
model (six state, three control variable, point mass model). Nonlinear feed-
back laws are presented for computing the optimal control variables u (throttle),
o (bank angle) and a (angle-of-attack) as a function of target and pursuer air-
craft states and desired terminal conditions. The SPT control 1aw results in a
hierarchical nonlinear feedback structure. It is supplemented by predictive
feedback terms for small deviations from the optimal trajectory and for maneuvers
near the terminal time where the SPT approximation is not valid. The F-4 simu-
lation results using the SPT control law show minor sacrifice in accuracy over
the off-1ine optimization results, in the long range intercept case.

A real-time capability assessment of the SPT algorithm on a microcomputer
has been performed and based on the results presented in this report, it may be
concluded that real-time, three-dimensional long range aircraft trajectory
optimization is possible using SPT. The implementation of this algorithm on a
microcomputer is estimated to result in a control update cycle time of 27 msec,
which is almost four times smaller than the common radar sampling interval of
100 msec. The storage and computational requirements of the algorithm are found
to be well suited for on-board real-time implementation on a microcomputer.

The accuracy of the SPT solution is analyzed and it is shown how "continua-
tion-type" methods may be used to obtain exact optimal trajectories starting
from the SPT solution. The advantage of using predictive terms to supplement
the SPT feedback laws is demonstrated for the aircraft trajectory optimization
problem. In particular, it is shown that the SPT approximation breaks down near
the terminal phase and must be corrected by "continuation" and Generalized
Multiple Scale (GMS) methods.
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